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Foreword

The achievement gap in mathematics remains
an abhorrent reality, despite periodic surges and
fragmented efforts of school reform movements
to eradicate it. We cannot deny that mathematics
education in the United States has undergone
dramatic transformations during the 20 or more
years that have passed since I first encountered
Lucy Sells’ 1978 seminal research on the
relationship between mathematics education

and access to courses and careers in science and
engineering. Sells, a Berkeley sociologist who
sought to understand the under-representation of
women in science-related professions, identified
mathematics as the “critical filter.” At that time,
my attention was on the achievement gap in
mathematics because it served as an effective pre-
college filter for access to science-related courses
and careers for African American and Latino/
Hispanic and female students. In the introduction
to Mathematics and Science: Critical Filters for
the Future of Minority Students (first published in
1985), the available data allowed me to summarize
the situation at that time quite simply:

Black and Hispanic students are scoring
below the national norm on science and
mathematics achievement tests and are
not enrolling in advanced high school
mathematics classes in proportion to their
numbers in the population.... Because
mathematics is a sequential subject and
most science and science-related posi-
tions require a mathematics background,
minority students must be encouraged to
begin their mathematics education early
and to continue through high school at

a minimum.

William Tate’s new monograph Access
and Opportunities to Learn Are Not Accidents:
Engineering Mathematical Progress in Your School

comes at a time when eliminating this gap takes
on a new urgency, one driven by this country’s
quest to maintain its position in a technology-
driven, global economy that requires a new level
of mathematical competency from its workers,
even those who are not directly engaged in science
and engineering fields. The 2000 Census and
subsequent demographic projections strongly
suggest that it is foolhardy not to prepare all
students for a meaningful role in addressing the
challenges the nation can expect to face in light
of rapidly expanding globalization. Large-scale
past failures to achieve parity of outcomes in
mathematics learning makes this monograph a
welcome tool for those who are determined to
eliminate the achievement gap.

While my 1985 publication sought to develop
for educators—particularly elementary and middle
school principals and teachers—a research-based
awareness of then-known cognitive, affective, and
classroom variables related to minority student
performance in mathematics and science, Access
and Opportunities to Learn Are Not Accidents:
Engineering Mathematical Progress, takes us
deeper, particularly into the issues of classroom
and instructional variables. Using an engineering
metaphor, Dr. Tate has carefully developed a tool
to help readers—whether they are concerned with
policy, practice, or equity issues in mathematics—
know the kind and quality of information they
would need in designing effective mathematics
intervention programs. He provides the “designer”
with the historical context for this work: a
summary of the events, movements, and policies
that have had a significant impact on school
mathematics, with particular attention to the
unique mathematics reform history and challenges
faced by urban schools. True to the spirit of
engineering, he defines the problem, providing a
rich exploration of current demographic trends
juxtaposed with mathematics achievement
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trends. His summaries of the research and
analyses of data from the National Longitudinal
Study (NELS) and the National Assessment
of Educational Progress (NAEP) can serve as
cohesive resources on trends. We usually read
these kinds of reports individually, but his analysis
across these two major assessment programs quite
effectively highlights for even the busiest reader
trends in mathematics performance by race/
ethnicity and socioeconomic status. The data give
concrete meaning to the term “achievement gap,”
making a strong case for sufficiently resourced,
cohesive intervention in the mathematics
education of low SES students in general—and low
SES minority students, in particular.

To assist educators in designing a cohesive
set of intervention strategies, Dr. Tate introduces
a user-friendly theoretical framework, based on
Opportunity to Learn research and data from
international assessments. With this framework in
mind, he engages the reader in an exploration of
powerful classroom/instructional variables related
to “time and quality” factors in the learning of
mathematics. Appropriate content exposure,
coverage, and emphasis and quality instructional
delivery are all essential. Fortunately, in the

Foreword

discussion of instructional delivery, the often-
overlooked issue of some students having access
but not the support that would enable them to
exploit the opportunity to learn mathematics

is addressed.

Access and Opportunities to Learn Are Not
Accidents: Engineering Mathematical Progress
offers us much solid information, substantive
recommendations, thoughtful strategies, and
innovative models. This monograph offers tools for
understanding and action. With comprehensive
planning, intentional implementation, monitoring,
and appropriate assessment, we can eliminate the
achievement gap.

Thank you, William Tate, for the hard facts
and the promising strategies that you offer here!
Thank you, Dr. Francena Cummings, Director
of the Mathematics and Science Consortium at
SERVE, for recognizing the need and supporting
the development of this monograph.

DeAnna Banks Beane, Director
Partnership for Learning

Association of Science Technology Centers
Incorporated



Preface

About 20 years ago, I began working with
schools to improve minority student participation
and achievement in mathematics and science,
and there were only a few resources available on
this topic. The most practical tool available was
Mathematics and Science: Critical Filters for the
Future (Beane, 1985). In this document, Beane
described research-based factors that influenced
the achievement and participation of minority
students. (See the Foreword by Beane in this
document.) In addition to delineating research-
based factors, Critical Filters offered strategies to
support elementary principals and school-based
teacher leaders in designing intervention plans
to address improving mathematics and science
achievement. While there are signs that there have
been many initiatives targeting minority students’
achievement in mathematics since 1985, there is
still a considerable dearth of research and practical
tools related to this issue. Further, current trends
across national assessment sources show that there
have been some changes in the achievement of
underserved and minority students; however, the
“achievement gap” persists.
With the release of Curriculum and

Evaluation Standards for School Mathematics
in 1989 and the subsequent release of Principles
and Standards for School Mathematics in 2000,
the National Council of Teachers of Mathematics
(NCTM) set a clear standard: Mathematical
power must be considered the right of—and the
expectation for—every child. To this end, in
Principles and Standards for School Mathematics,
the equity principle offers a vision of mathematics
education that includes high expectations, and
worthwhile opportunities for all students. While
the “mathematics-for-all” disposition may not be
new; it is much more explicit about who can and
should have access to quality mathematics.

The Southeast Eisenhower Regional
Consortium at SERVE commissioned this

monograph, Access and Opportunities to Learn

are Not Accidents: Engineering Mathematical
Progress in Your School, to build on the literature
related to factors and interventions impacting

the achievement of underserved students in
mathematics education. As the title implies, the
author, Dr. William F. Tate, asserts that access and
opportunities to quality mathematics education
require thoughtful action and planning. Utilizing
an Opportunity to Learn (OTL) framework,

he argues that time, quality, and design are key
building blocks for engineering mathematical
progress in schools. These building blocks,
however, must be situated within the larger context
of the system that supports the mathematics
program. In essence, the mathematics program
will be impacted by factors like policies, fiscal
resources, and community and national contexts.

Dr. Tate amplifies his message of engineering
mathematical progress by stressing the importance
of a clear vision and learner goals that reflect
state and local mathematics standards and
accountability structures. While many arguments
around improving mathematics for underserved
and minority students center on access to
courses and tracking, he focuses on equally
important variables related to quality instruction
in mathematics classrooms and support
infrastructures. This focus includes the selection
and implementation of a quality curriculum and
an accountability plan that monitors student
progress, ultimately providing data that may
be used in continuous refinement of the
mathematics program.

What does this mean for advancing
underserved populations’ participation in quality
mathematics programs? There is an expectation
that teachers will be the heart of delivering
quality instruction, embracing instructional
practices that include a major shift from their
traditional methods of teaching—lecturing and

Access and Opportunities to Learn Are Not Accidents
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textbook-oriented instruction. To this end, Dr.
Tate encourages providing models of professional
development that afford teachers similar
opportunities—active learning that is designed
from the ideas and resources related to their daily
work with students. Moreover, there is a clear
expectation that teachers have an opportunity to
learn together as they consider standards-based
instruction. As teachers learn to negotiate various
professional development strategies like coaching,
cases, mentoring, and study groups, they are
often empowered to provide leadership within the
local schools.

Empowering teachers! Empowered students!
Reform in mathematics has been ongoing for quite
a while but Cummins (1989) asserts that it is only
possible when educators play an active role in
involving students in the process. He believes that:

Preface

Students who are empowered by their
interactions with educators experience a
sense of control over their own lives and
they develop the ability, confidence, and
motivation to succeed academically. They
participate competently in instruction as
a result of having developed a confident
cultural identity and appropriate
strategies for accessing the information or
resources they require in order to carry
out academic tasks to which they are
committed (p.4).

Cummins’ remarks emphasize how important
teachers are to students’ learning and liking
mathematics. Access and Opportunities to Learn:
Engineering Mathematical Progress in Your
Schools offers valuable data and strategies for
designing and maintaining quality mathematics
programs. This monograph should be valuable
to policymakers, teacher leaders, principals, and
educators who are responsible for providing K-12
mathematics education.

Francena D. Cummings, Director
Southeast Eisenhower Regional Consortium
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Introduction

In 1985, the Mid-Atlantic Equity Center
published Mathematics and Science: Critical
Filters for the Future, addressing mathematics
education and academic opportunity. In this
monograph, DeAnna Banks Beane argued,

“The success of many intervention programs
demonstrates that there are no permanent barriers
to minority student achievement in science and
mathematics. However, the data tell us that the
longer we wait to intervene, the more invincible
the barriers become” (p. 1). Her remarks are a
reminder of the challenges and opportunities in
school mathematics requiring clarification and
associated strategies for change and improvement.
This monograph represents an effort to build
upon and extend beyond the literature on school
mathematics as discussed in Mathematics and
Science: Critical Filters for the Future.

The political and educational landscape in
school mathematics has changed in important
ways since 1985. Three significant changes are
discussed here. The first change is the introduction
of mathematics standards to the education
community, specifically the 1989 release of the
Curriculum and Evaluation Standards for School
Mathematics published by the National Council
of Teachers of Mathematics (NCTM). This
document was a part of a series of mathematics
standards documents produced by the Council
(NCTM, 1991; 1995; 2000). The role of standards
in educational practice and policy making has
gained traction, and today dominates discourse
related to school mathematics. The NCTM
Standards documents and related educational
policy developments have resulted in the rapid
evolution of standards-based language. In the post
Curriculum and Evaluation Standards for School
Mathematics era (1990-2002), the word “standard”
produced 26,843 documents in the ERIC database.
While the citations were not all directly related
to school mathematics, the point here is that

standards-based language permeates the
education terrain. Most states have standards for
school mathematics that signal to local school
districts goals for instruction and desired
student outcomes.

A second change is a movement calling
for educational leadership to more directly
address issues of learning and teaching in
schools (Rowan, 1995). Significant changes
are taking place in the ways the constructs of
teaching and learning are now being defined by
researchers, practitioners, and policymakers.
During the 1980s and 1990s, cognitive models
of teaching and learning were formulated and
tested, and many small-scale efforts to transition
from the predominant behaviorist models of
instructional theory occurred. This research and
development has implications for understanding
best practice in the design of educational goals,
implementation of instructional practices,
and development of assessment techniques.
Thus, instructional leadership requires a deep
understanding of research and development.
Many state and federal policies require school
district instructional leadership to document the
effectiveness or research-base undergirding local
change strategies. This represents a new demand
on those charged with district-wide and school-
level improvements. This monograph is designed
for instructional leaders facing today’s research-
focused managerial demands.

A third and related change in the educational
landscape is the No Child Left Behind Act of 2001
(NCLB). The NCLB Act calls for a new level of
Title I accountability by requiring each state
to implement accountability systems covering
all public schools and public school students.
These systems must be based on rigorous state
standards in mathematics, annual testing for all
students in grades 3-8, and annual statewide
progress objectives ensuring that all groups of
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students reach established levels of mathematical
proficiency within 12 years. Assessment findings
and state progress objectives must be broken

out by poverty, race, ethnicity, disability, and
limited English proficiency to ensure that no
group is left behind. School districts and schools
that fail to make adequate yearly progress (AYP)
toward statewide proficiency goals will, over time,
be subject to improvement, corrective action,
and restructuring measures aimed at getting
them back on course to meet state standards.
Schools that meet or exceed AYP objectives or
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close achievement gaps will be eligible for State
Academic Achievement Awards.

Setting rigorous state standards and related
accountability models is placing significant
pressure on school districts to rethink past
practice and to look for effective and sound
strategies to support the teaching and learning
of mathematics. This monograph is designed to
assist teachers, administrators, and community
supporters in their efforts to incorporate
research-based strategies into the school
mathematics program.




CHAPTER 1

Engineering a Change
in Mathematics Education

“Knowledge and productivity are like compound interest. Given two people of approximately the same
ability and one person who works 10% more than the other, the latter will more than twice out produce the
former. The more you know, the more you learn; the more you learn, the more you can do; the more you can
do, the more the opportunity—it is very much like compound interest. I don’t want to give you a rate, but it
is a very high rate. Given two people with exactly the same ability, the one person who manages day in and
day out to get in one more hour of thinking will be tremendously more productive over a lifetime.”

~Richard Hamming'

How can mathematics educators be more
productive teachers? How do we accelerate
students’ learning of school mathematics?

These are difficult questions. The teaching and
learning process is embedded in a complex web
of schools, school districts, communities, and
state governance systems that each play a role in
expanding students’ opportunity to learn and
think about mathematics. Some have criticized the
mathematics education community for failing to
adequately articulate how access and opportunity
to learn mathematics can be expanded to
traditionally underserved students (Apple,

1992; Hilliard, 1991; Meyer, 1991). The National
Council of Teachers of Mathematics (NCTM)

has recognized this criticism. Recent standards
documents produced by the NCTM have called
for a focus on equity. For example, the Principles
and Standards for School Mathematics (NCTM,
2000) stated:

The vision of equity in mathematics
education challenges a pervasive societal
belief in North America that only

some students are capable of learning
mathematics. This belief, in contrast to the
equally pervasive view that all students
can and should learn to read and write

in English, leads to low expectations for

too many students. Low expectations are
especially problematic because students
who live in poverty, students who are not
native speakers of English, students with
disabilities, females, and many nonwhite
students have traditionally been far more
likely than their counterparts in other
demographic groups to be the victims of
low expectations. Expectations must be
raised—mathematics can and must be
learned by all students. (pp. 12-13)

High expectations for all students is a new
challenge in school mathematics education. Past
reform efforts in mathematics education were
designed for more select groups. For example,
in the post-Brown era, the “new math” reform
movement sought to improve mathematics
education in the United States, as it was thought
that good scientific education was a vital
component of a strong national defense program
and a robust economy (Kliebard, 1987). Initiated
in response to the launch of Sputnik by the Soviet
Union, this mathematics reform effort designed
to address the nation’s scientific crisis did little to
address the problems of students of color in urban
and rural areas of the United States (Garcia, 1995;
Nieto, 1995; Tate, 1997). Many responsible for the
reform effort stated that their programs should be

! This quote is taken from a transcription of the Bell Communications Research Seminar, March 7, 1986.
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limited to “college-capable” students (Devault &
Weaver, 1970; Kleibard, 1987; NCTM, 1959). The
code words “college capable” were a signifier to the
educational establishment that only a select few
communities and students were appropriate for
the reform activities. This is not to say that urban,
rural, and poor communities were completely
denied opportunities to participate in this reform
effort. Instead, these opportunities were limited
and insufficient for the curricular and pedagogical
changes called for within the reform movement.
Thus, for many students—particularly African
American and Hispanic students—the late 1950s
and 1960s are best characterized as an era of
benign neglect with respect to opportunity

to learn challenging, high-level mathematics
(Tate, 1996).

Engineering a Change in Mathematics Education

The focus of mathematics curriculum and
pedagogy has evolved in a cyclic fashion. In the
late 1960s and early 1970s, a different mathematics
movement, “back to basics,” emerged, which
focused primarily on elementary and middle
schools (NCTM, 1980). This movement was a
product of policy directives conceived to address
equality of educational opportunity through
compensatory education. The back-to-basics
effort called for instruction in a narrow set of
rudimentary mathematics procedures and facts,
often to the exclusion of conceptually rich tasks
and advanced mathematical ideas.

Members of the National Council of
Supervisors of Mathematics (NCSM) were
concerned about the effect this would have
on the teaching and learning of mathematics



appropriate to the needs in a modern society.

An NCSM 1977 position paper urged that we
move forward, not “back” to the basics. Not
included in the back to basics movement were ten
important areas of mathematics students would
find essential as adults: problem solving; applying
mathematics to everyday situations; alertness

to reasonableness of results; estimation and
approximation; appropriate computational skills;
geometry; measurement; reading, interpreting,
and constructing tables, charts and graphs; using
mathematics to predict; and computer literacy.
The NCSM position paper was widely influential
in school mathematics circles; however, the back
to basics movement had a pronounced impact on
the learning opportunities of low-income urban
schools (Strickland & Ascher, 1992).

On the positive side, the basic skills effort
resulted in limited gains on narrowly defined
aspects of school mathematics for traditionally
underserved student demographic groups
(Secada, 1992). It served as an existence proof
that when teachers and administrators agreed on
and supported a common goal in mathematics,
students would learn the content. However, as the
vision of mathematics education has shifted from
largely rudimentary notions to a more challenging
standard, the limitations of past pedagogical
and school organizational support systems are
apparent. The National Research Council
(2001) stated:

To many people, school mathematics

is virtually a phenomenon of nature.

It seems timeless, set in stone—hard

to change and perhaps not needing to
change. But the school mathematics
education of yesterday, which had a
practical basis, is no longer viable. Rote
learning of arithmetic procedures no
longer has the clear value it once had. The
widespread availability of technological
tools for computation means that people
are less dependent on their own powers
of computation. At the same time, people
are much more exposed to numbers

and quantitative ideas and so need to
deal with mathematics on a higher level
than they did just 20 years ago. Too few
U.S. students, however, leave elementary
and middle school with adequate
mathematical knowledge, skill, and
confidence for anyone to be satisfied that
all is well in school mathematics. (p. 407)

One response to the current state of
affairs in school mathematics has been the
rapid development and adoption of state-level
mathematics standards. Typically, there is
an accountability model associated with the
mathematics content standards to provide
indicators of student progress. However, situated
in the time between the adoption of mathematics
standards and the application of accountability
models are important aspects of the educational
process. There is an unstated assumption that
standards and accountability models are only part
of the solution strategy for school improvement
in mathematics education. The assumption is that
armed with quantitative data, local leadership—
teachers, mathematics coordinators and
supervisors, principals, assistant superintendents,
superintendents, and school board members—will
proactively respond to data. The way in which
local school leadership responds to system
data has a profound consequence for students’
opportunity to learn.

Hence, the focus of this monograph is
largely devoted to supporting the improvement
of mathematics teaching and learning and,
ultimately, the performance of students on
measures of mathematics achievement. This
monograph is written with the hope that it will
help the reader understand how research-based
strategies can support the engineering of positive
change to the structures supporting the teaching
and learning of mathematics in educational
settings.

The engineer as a metaphor representing a
change agent requires a brief explanation. To
some, the engineer may appear to be synonymous
with the scientist.” The distinction between a

2 In fact, Hurd (1997) argued the paradigmatic boundaries of science are shifting toward a science guided by the coaction of
science and technology, perceived as an integrated system. Further, he indicated, many in the science community speculate
that engineering education may be the best preparation for the natural sciences. Yet, this speculation suggests there are

distinct paradigmatic differences.
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scientist and engineer is partially clarified by
examining two activities related to the preparation
of each professional—analysis and design. In
science classes, students are required to answer
problems, observe phenomena in lab settings,
record observations, and perform calculations.
This process is the essence of analysis. In
engineering classes, the instruction often stresses
the importance of design. The difference between
analysis and design can be described in the
following way: If only one solution to a problem
exists, and discovering it merely entails putting
together pieces of discrete information, the
activity is probably analysis (Horenstein, 2002).
In comparison, if more than one solution exists,
and if determining a reasonable path demands
being creative, making choices, performing tests,
iterating, and evaluating, then the activity is
design. Design often includes analysis; however,
it also must involve at least one of these latter
components. Horenstein (2002) offered the
following example to further clarify the difference
between analysis and design:

[A] remote-controlled buoy is located off
the coast of California and is maintained
by the U.S. National Oceanic and
Atmospheric Administration (NOAA).
It provides 24-hour data to mariners, the
Coast Guard, and weather forecasters.
Processing the data stream from this
buoy, posting it on the Internet, and using
information to forecast the weather are
examples of analysis. Deciding how [his
emphasis] to build the buoy so that it
meets the needs of NOAA is an example
of design. (p. 29)

Administrator and teacher leadership charged
with addressing our nation’s school mathematics

Engineering a Change in Mathematics Education

challenges must decide how to build effective
programs. Clearly, there is more than one solution
to our school mathematics problem, and designing
appropriate solutions will require creativity,

hard choices, performance tests, iterative action,
and evaluation. Like engineers, mathematics
educators must study access and opportunity-
to-learn issues in great depth, and then design

an intervention—“learn to build.” In contrast,
most scientists construct instruments to measure
and study phenomena of interest—they “build

to learn.” This monograph is dedicated to those
interested in “learning to build” outstanding
school mathematics programs.

The next two chapters provide an examination
of the challenges facing school mathematics
change agents. Chapter 2 documents changes
in U.S. mathematics achievement by reviewing
population trends and national achievement trend
studies. A focus of this chapter is to determine
achievement trends of various racial-ethnic
and socioeconomic groups. The third chapter
examines opportunity-to-learn (OTL) factors
that have the potential to positively influence the
learning of mathematics. The intent in this chapter
is to offer possible building blocks to support
the engineering of positive change in school
mathematics and to review the work of some
scholars who have designed school mathematics
improvement models based on important OTL
factors. The fourth chapter provides a closer look
at research-based cases of successful mathematics
programs. This chapter will highlight both
classroom and organizational components that are
present in high performing school mathematics
programs. The fifth and final chapter is a brief
review of the engineering perspective—learning
to build—and its importance for school
mathematics improvement.



CHAPTER 2

Learning to Build:

The Problem Defined

Who are the children in the classrooms of
today and the workforce of tomorrow?

One of the goals of recent calls for
mathematics reform is to accelerate the
achievement levels of all students, and particularly
students traditionally underserved in mathematics
classrooms. For example, the National Education
Goals Report: Building a Nation of Learners
(National Education Goals Panel, 1995) called for
the mathematics performance of all students at
the elementary and secondary levels to increase
significantly in every quartile and for the
distribution of minority students in each quartile
to more reflect the student population as a whole.
Thus, it is important for the education community
to understand population trends related to various
demographic groups.

The student race/ethnicity population trends
have changed dramatically since the 1985 release
of Mathematics and Science: Critical Filters for the
Future. Figure 1 provides insight into this trend.

The information in Figure 1 requires
additional explanation. The U.S. school-age
population declined between 1980 and 1990 but

Figure 1 United States Student Race/Ethnicity
1986 and 2000

Race/Ethnicity Fall 1986 Fall 2000

White, non-Hispanic 70.4% 61.2%
Black?, non-Hispanic 16.1% 17.2%
Hispanic 9.9% 16.3%
Asian or Pacific Islander 2.8% 4.1%
American Indian or Alaskan 0.9% 1.2%
(native)

Source: U.S. Department of Education (due to rounding may
not add up to 100%).

became more diverse. The United States General
Accounting Office (GAO, 1993) reported in 1990
there were about 44.4 million school-age children
(ages 5-17), a decline of more than 2.3 million, or
5.8% since 1980. In 1992, the percentages of male
and female students 5-18 years old enrolled in
school were 51.4% and 48.6%, respectively

(NSE, 1994).

Changes in the racial-ethnic characteristics of
the U.S. population have been a part of American
life since the first European settlements. However,
only in recent decades has the population in the
United States become less, rather than more,
White. The racial-ethnic diversity of the country
is much greater now than at any previous period
in history and seems on course to become
progressively more diverse for some time to
come (Riche & Pollard, 1992; Vernez, 1992).

This diversity is reflected in recent trends of
school-age children.

During the 1980s, the White school-age
population declined by more than 4 million
children, or about 12%, and the number of
African American children decreased by about
250,000, or about 4%. In contrast, the number of
Hispanic school-age children increased by 1.25
million, or 57%, and the number of Asian children
rose by over 600,000—an 87% increase. In 1990,
White children made up less than 70% of the total
school-age children, down from about 75% in 1980
(GAO, 1993).

As with the total school-age population, poor
children became more racially and ethnically
diverse. On the 1990 census, an individual
or family would be categorized as poor if its
annual before-tax cash income was below the
corresponding poverty threshold for a family of
that size. On the 1990 census, the poverty cutoff

* The terms Black and African American are used interchangeably in this document.
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for a family of four was a 1989 income of $12,674.
During the 1980s, the number of poor school-age
children increased by 6% from about 7.2 million to
7.6 million (GAO, 1993). The national poverty rate
for school-age children rose from 15.3% to 17.1%.
The number of poor Hispanic and Asian children
grew by almost 600,000; while the number of
poor White children declined, and the African
American school-age population in poverty
remained relatively constant.

Despite the decline in poor White children,
they continued to make up more than 40% of
all poor school-age children in 1990, but this
percentage changes dramatically by geographic
region. White children represented over two-
thirds of all rural poor children and approximately
one-third of the urban school-age population
in poverty. Yet, regardless of region, African
American children experienced the highest rates
of school-age poverty, from almost 41% in rural
areas to 34% in urban areas.

Three other traditionally underserved
demographic groups—immigrant households,
linguistically isolated (LI) households, and limited
English proficiency (LEP) households—each

contributed about 5% of all school-age poverty
children (GAO, 1993).* Many of the children were
categorized into more than one of these groups.
When adjusted for overlap, these three groups
totaled nearly 4 million children—more than 9%
of all school-age children. More than 30% of these
4 million children were also classified as poor.
Current demographic trends should be
examined in light of mathematics achievement
trends. As the demographic context of the United
States changes rapidly, how well is our system
of education performing in school mathematics
across demographic groups?

Proficiency Trends in Mathematics

The purpose of this section is to document
changes in mathematics achievement by
examining national trend studies to better
understand the status of the United States
education system. The discussion of national
trend data is offered for two related reasons.
The first reason is to clearly describe the student
achievement problem. The trend studies reviewed
in this section are in part a reflection of past
practice in school mathematics. Thus, the
mathematics trends are linked to limitations of
the implemented curriculum, pedagogy, and
school organizational strategies. A second reason
to discuss national mathematics trend studies
is to describe the measures used to determine
mathematics achievement and to interpret the
findings with a focus on engineering change.
The trend studies should be examined with
several concepts in mind. Miller (1995) argued
there are three intertwined concepts that should
be taken into consideration when attempting to
build effective strategies to accelerate minority
student performance on the basis of academic
achievement data:

1. Generally, differences in academic
achievement patterns among racial/ethnic
groups reflect the fact that the variation
in family resources is greater than the
variation in school resources. His analysis of
achievement patterns and resource allocations

* Some definitions of terms are required here. LI children are in households where no persons aged 14 or older speak “only
English” and no persons aged 14 or older who speak a language other than English speak English “very well.” There is no
generally accepted definition of LEP. The term generally refers to students who have difficulty with speaking, writing, and/or
reading English. The GAO (1993) defined LEP children as all persons aged five to 17 living in families whose members the
Census reported as speaking English “well,” “not well,” or “not at all.” It should be noted that there is considerable variation
in actual English-speaking ability among those classified in the “speaks English well” category.
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confirms that most high-SES students receive
several times more resources than most
low-SES students receive, and much of this
resource gap is a function of family resources
rather than school resources.

2. Demographic group educational advancement
is an intergenerational process. From
this perspective, education-related family
resources are school resources that have
accumulated across multiple generations.
On average, investments in the current
generation of African American, Hispanic,
and American Indian children in the form of
intergenerationally accrued education-relevant
family resources are significantly less than
comparable investments in White and Asian
children.

3. Educational attainment is a function of the
quality of education-relevant opportunity
structure over several generations. The pace of
educational advancement depends on multiple
generations of children attending good
schools.

Miller (1995) stated the following about these
three interrelated concepts:

Current variations in education-relevant
family resources are heavily a function of
variations in the historical opportunity
structure experienced by generations of
racial/ethnic groups. At the same time, the
quality of the contemporary opportunity
structure is crucial to the further
evolution of family resource variation
patterns. The nation’s ability to accelerate
the intergenerational advancement process
for minorities may be decisively shaped

by its capacity to engineer [my emphasis]
a more favorable opportunity structure

for them in the years ahead as well as to
supplement family and school resources
for those groups at a level commensurate
with their actual needs. (p. 339-40)

The first step in engineering change is
problem identification. One goal of recent
federal (NCLB Act) legislation and state
policy focused on mathematics standards and
accountability is to document the achievement
level of traditionally underserved students’ yearly
progress and to provide performance trends

at alocal level. The theory of action of most
standards-based reform initiated at the state and
federal level of governance suggests that armed
with quantitative data on how students perform
against standards, school leadership will react

by making instructional changes required to
improve student performance. According to the
National Research Council (1999]a]), “Research
on early implementation of standards-based
systems shows, however, that many schools lack an
understanding of the changes that are needed and
lack the capacity to make them. The link between
assessment and instruction needs to be made
strong and explicit” (p. 5).

Why do schools lack an understanding of
administrative changes that are needed to improve
student performance on specifically designated
tests? One or all of the following problems may
hamper many school leaders:

« Failure to disaggregate and organize data
by race, class, language proficiency, or other
relevant demographic variables

« Failure to align local content standards with
external performance standards associated
with the designated testing system

+ Failure to align the testing cycle and fiscal
planning

One reason many schools lack the insight
to make appropriate instructional changes
is related to how they organize and analyze
data. While many states, schools districts, and
schools disaggregate data to help provide a
more accurate picture of student performance,
many educational leaders do not have insight
into student mathematical performance by
demographic group. This is problematic in that
student achievement patterns and trends are
potentially overlooked; thus, opportunities for
instructional intervention are lost, and future
student performance is hampered. Further, lack
of clarity about the relationship between content
standards and performance standards can result
in the implementation of curriculum that is
not consistent with outcome measures being
employed (NRC, 1999[a]). Thus, any discussion of
achievement trends should be coupled with a clear
description of what is being measured. Moreover,
the discussion of trends must occur in a timeframe
that allows for immediate intervention. The timing
of tests and the administrative planning cycle
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further complicate the possibility of intervention.
In many states, the test results are produced

after fiscal planning has taken place in school
districts. This disconnect makes it difficult to
plan appropriate interventions for the upcoming
school year.

Racial-Ethnic Trends’

Rapid growth of the school-age population and
changing discourses about racial categories has
made it more difficult to classify racial-ethnic,
immigrant, and language groups. For example,
within the Hispanic, Asian, and African American
populations, distinct subgroups have formed,

and many have requested unique demographic
characterizations. Most national trend analysis of
mathematics performance is not conducted at this
level of detail. This limitation stated a review of
this literature remains instructive for evaluating
national trend direction in school mathematics.

NAEP Trends. The National Assessment of
Educational Progress (NAEP) trend assessment

is largely a basic skills examination. To measure
performance trends, subsets of the same items
have been a part of successive assessments. Some
items have been included in each examination.
This practice means that findings from nine
NAEP trend assessments provide insight into how
students’ mathematics proficiency has changed
from 1973-1999. NAEP mathematics proficiency

scores are available for 1973, 1978, 1982, 1986,
1990, 1992, 1994, 1996, 1999, and 2003.¢ Tests are
administered to a sampling of students across the
United States at ages 9, 13, and 17. The scale scores,
which range from 0 to 500, provide a common
metric for determining levels of proficiency across
assessments and demographic characteristics.
NAERP scores reflect student performance at five
levels on the scale:

« Level 150—Basic Arithmetic Facts

+ Level 200—Beginning Skills and
Understanding

« Level 250—Basic Operations and Beginning
Problem Solving

+ Level 300—Moderately Complex Procedures
and Reasoning

« Level 350—Multi-step Problem Solving and
Algebra

The performance-level categories were
developed for the 1973 assessment and have
continued to be used through the 1999 assessment.
However, the language associated with these
categories has evolved and changed over this time
period. Thus, it is important for the “engineer”
charged with making decisions about curriculum,
teaching, and other relevant educational inputs to
be aware that this trend analysis may use language
consistent with today’s standards-based discourse
(NCTM, 1989; 2000). However, the test items may

> The trend studies reviewed in this monograph are limited to select national-level analyses that provide insight into student
mathematics performance across demographic groups. National studies that did not disaggregate data by demographic
group are not included. Moreover, no state-level trend studies or international studies (TIMMS) are included. The period
from 1985 to 1999 is a particular focus of this trend analysis summary. This report continues the 1985 effort of DeAnna

Banks Beane.

¢ The 2003 NAEP scores are not included in this discussion. At the time of publication, these findings were not included in the

trend study.
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Figure 2 NAEP Trends in Average Mathematics

Scale Scores by Race/Ethnicity

E?I::ilcity Year Age 9 Age 13 Age 17

White 1999 | 238.8(0.9) | 283.1(0.8) | 314.8(1.1)
1996 | 236.9(1.0) | 281.2(0.9) | 313.4(1.4)
1994 | 236.8(1.0) | 280.8(0.9) | 312.3(1.1)
1992 | 235.1 (0.8)* | 278.9 (0.9)* | 311.9(0.8)
1990 |235.2(0.8)* | 276.3 (1.1)* | 309.5 (1.0)*
1986 | 226.9 (1.1)* | 273.6 (1.3)* | 307.5 (1.0)*
1982 | 224.0 (1.1)* | 274.4 (1.0)* | 303.7 (0.9)
1978 | 224.1 (0.9)* | 271.6 (0.8)* | 305.9 (0.9)*
1973 | 225.0 (1.0)* | 274.0 (0.9)* | 310.0 (1.1)*
1999 | 210.9(1.6) | 251.0(2.6) | 283.3(1.5)
1996 | 211.6(1.4) | 252.1(1.3) | 286.4(1.7)
1994 | 212.1(1.6) | 251.5(3.5) | 285.5(1.8)
1992 | 208.0(2.0) | 250.2(1.9) | 285.8(2.2)
1990 | 208.4 (2.2) | 249.1 (2.3) | 288.5(2.8)
1986 | 201.6 (1.6)* | 249.2 (2.3) | 278.6 (2.1)
1982 | 194.9 (1.6)* | 240.4 (1.6)* | 271.8 (1.2)*
1978 | 192.4 (1.1)* | 229.6 (1.9)* | 268.4 (1.3)*
1973 | 190.0 (1.8)* | 228.0(1.9) | 270.0(1.3)

CISENTEN 1999 | 212.9(1.9) | 259.2(1.7) | 292.7 (2.5)
1996 | 214.7 (1.7) | 255.7 (1.6) | 292.0 (2.1)
1994 | 209.9 (2.3) | 256.0(1.9) | 290.8 (3.7)
1992 | 211.9(2.3) | 259.3(1.8) | 292.2 (2.6)
1990 | 213.8(2.1) | 254.6(1.8) | 283.5 (2.9)*
1986 | 205.4 (2.1)* | 254.3(2.9) | 283.1 (2.9)*
1982 | 204.0(1.3)* | 252.4 (1.7)* | 276.7 (1.8)*
1978 | 202.9 (2.2)* | 238.0 (2.0)* | 276.3 (2.3)*
1973 | 202.0 (2.4)* | 239.0 (2.2)* | 277.0 (2.2)*

Standard errors of the scale scores appear in parentheses.
*Significantly different from 1999. Source: NAEP 1999 Trends
in Academic Progress, NCES (2000).

not reflect the problem solving and reasoning
descriptions found in more recent standards
documents and state content and performance
assessment documents. With this limitation noted,
the NAEP trend analysis is a valuable gauge of
student performance progress over time. Figure 2
provides a summary of NAEP racial-ethnic trends
in mathematics performance from 1973-1999.
The racial-ethnic mathematics scores
as measured by the NAEP long-term trend
assessment improved for all racial-ethnic
subgroups from 1973-1999. The scores for Black
and Hispanic students are less consistent than
White students and demonstrate more abrupt
changes. However, the samples of Black and
Hispanic students are smaller than that of White
students. Smaller samples typically have more
variability. Overall, the NAEP trend assessment
indicates that all three racial-ethnic groups have
experienced positive growth in mathematics
proficiency. However, no group by age 17 was
performing on average at the highest student
performance level. This finding is a concern
given that the performance levels are more
closely aligned with a basic skills mathematics
curriculum.

NELS Trends. The National Education
Longitudinal Study of 1988 (NELS:88) included

a nationally representative sample of over 10,000
students, followed from eighth grade (1988)
through twelfth grade (1992) in nearly 800 high
schools nationwide. The schools in the study
include public, Catholic, and other private
schools and represent a range of enrollment,
religious affiliations, geographic settings, school
social composition, as well as various levels of
restructuring activity (Newmann & Wehlage,
1995). The NELS:88 mathematics tests were
constructed to measure both high-level and low-
level skills at three points in time: 1988, 1990,

and 1992. Thus, students in the sample were
assessed in mathematics at grades 8, 10, and 12,
respectively. The difficulty levels of the first and
second follow-up mathematics tests were adapted
to the students’ performance levels in the previous
administration. There were 40 items on each
mathematics test. Eighty-one items were used in
all forms of the test. The different forms of the test
were equated using item response theory (IRT) so
the various forms of the test could be equated with
a common metric. Units on these tests refer to
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the number of items answered correctly, after the
IRT procedures were used to score the tests and to
assign all students on the same scale.

Green and colleagues (1995) reported findings
from the NELS:88 second follow-up data set that
included mathematics achievement results of high
school seniors in 1992. The 1992 NELS:88 second
follow-up examination items represent items
typically characterized as traditional, basic skills
curriculum. Five levels of mathematics proficiency
were defined in the study (see Appendix A,

Table A1). Green et al. (1995) found that African
American and Hispanic students were less likely
than White and Asian students to demonstrate
advanced proficiencies (Levels 4 and 5) on the
standardized test of mathematics (12% and 20%
compared with 39% and 45%, respectively).
Further, 50% of the African American and 42% of
Hispanic students were categorized at Level 1 or
below. In comparison, 14% of the Asian and 21%
of White students performed at Level 1 or below.

Rasinski, Ingels, Rock, and Pollack (1993)
compared mathematics scores for sophomores
in the 1980 High School and Beyond (HS& B)
study and the 1990 NELS:88 (a follow-up study
conducted in 1990) by using an IRT scaling
procedure that linked the two assessment
instruments. The HS&B sophomore cohort
mathematics test administered in 1980 consisted
of 38 test items and required students to complete
the examination in 21 minutes. The test items
were quantitative comparisons that required
students to mark which of two quantities is
greater, indicate their equality, or note a lack of
sufficient information to determine a relationship
between the quantities. The 1990 NELS:88 first
follow-up mathematics test contained 40 items
to be completed in 30 minutes. The test items
assessed advanced skills of comprehension
and simple mathematical application skills.

The items included geometric figures, graphs,
word problems, and quantitative comparisons
(as in the HS&B). Consistent with the HS&B, a
multiple-choice format was used in this follow-
up test. To compare the performance of the 1980
HS&B sophomore cohort and the 1990 NELS:88
sophomores, 16 quantitative comparisons from
the HS&B were included in the 1990 NELS:88
mathematics assessment. Thus, the findings from
this study should be viewed as a comparative
analysis of a narrow scope of the mathematics
content. The statistical findings are listed in

Learning to Build

Appendix A (Table A2). All racial and ethnic
groups with the exception of Asian students made
statistically significant gains in mathematics
performance on the test. In each administration
of the test, Asian students on average were the
highest performing of the four demographic
groups. African American and Hispanic students
gained more than Asian and White students in
this comparison.

Racial-Ethnic Trend Analysis Summary. The NAEP
trend analysis indicates improvement between
1973 and 1999 in all racial-ethnic groups at each
age level. During this period, African American
and Hispanic students made larger gains than
did White students; thus, the performance gap

on this assessment between White students

and the other two demographic groups closed
slightly. The 1980 HS&B and the 1990 NELS:88
sophomore cohort study reported a similar result:
African Americans, Hispanics, and Whites made
statistically significant gains in mathematics
achievement. Further, the gains made by African
American and Hispanic students were larger than
those of White students.

The NAEP trend analysis and the 1990
NELS:88 sophomore cohort study indicate that
the mathematics performance on basic skills items
over the past 20 years has improved for the largest
racial-ethnic demographic groups in the United
States. However, no racial-ethnic demographic
group has consistently produced scores that are
aligned with the highest levels of performance
being measured by the NAEP trend analysis.

Socio-Economic Trends

The literature on social class is a product of
multiple academic domains and traditions. Most
notions of social class build on the economic
roots of class and to varying degrees link class to
political and cultural indicators. The traditional
practice in school mathematics achievement data
is to organize a hierarchy of classes—working
class, lower-middle class, middle class, and so
on. This hierarchical framework objectifies high,
middle, and low positions on some metric, such
as socioeconomic status (SES) where “Parents’
Education” or “Family Income” is a proxy for
class. The limitations of this practice are discussed
elsewhere (Knapp and Woolverton, 1995; Grant
and Sleeter, 1986; Secada, 1992). However, for



the purpose of understanding SES trends in
mathematics achievement, a proxy like “Parents’
Education” is instructive. One major limitation
of this proxy—and others like it—is that school
administrators cannot intervene directly on

this variable.

NAEP trends. From 1978 to 1999, the National
Assessment of Educational Progress provided
trends in average mathematics proficiency by the
highest level of education that students reported
for either parent. A summary of the trends in
average mathematics scale scores for students

at three age levels by parents’ highest level of
education is provided in Appendix A (see Table
A3). Students at all three ages who indicated their
parents had less than a high school education have
exhibited overall gains in average mathematics
proficiency since 1978 across all ages. For students
who reported their parents” highest education
level was high school graduation, the average
proficiency trend has generally improved at

ages 9 and 17. The performance of 13-year-olds
was relatively the same during this time period.
For students with a parent who graduated from
college, only 9-year-olds had an average score in
1999 that was significantly higher than in 1978.

NELS Trends. Rasinski’s and colleagues’ (1993)
comparison of sophomore cohorts from the 1980
HS&B study and the 1990 NELS:88 follow-up
study documented a consistent pattern of positive
gains within SES groups during this period and

a difference that is related to student SES. Four
SES categories were created by framing the
socioeconomic status composite into SES high
quartile, SES high middle half, SES low middle
half, and SES low quartile. The statistical results
are presented in Appendix A (see Table A4). The
findings appear to suggest that the highest quartile
improved more than the lowest quartile; however,
approximately 12% of the lowest quartile in 1990
was missing math test scores, whereas nearly all
the 1980 lowest quartile reported mathematics
scores. The researchers speculated that the lowest
quartile gain could be biased downward as a
result of the missing data. The missing data make

any interpretation of differential gain between
quartiles difficult to make. However, it is clear
that within each data set—i.e., HS&B 1980 and
1990 NELS:88 Follow-up—SES status is related to
mathematics performance.

Green et al. (1995) reported findings from
the 1992 NELS:88 second follow-up survey of
seniors. In one analysis, Green and colleagues
compared achievement across racial and ethnic
groups controlling for SES. The mathematics
proficiency of Asian, Hispanics, African
Americans, and Whites, controlling for SES
is presented in Appendix A (see Table A5).

The two lowest proficiency levels—below basic
and level 1—and the two highest proficiency
levels—levels 4 and 5—are contrasted. The data
indicate that achievement differences exist even
when the effects of socioeconomic status are held
constant. For example, this study reported that
significant differences existed between Whites’
and African Americans’ test performance within
each SES category. Also, there were significant
differences between White and Hispanic seniors
in the high SES group. The percentage differences
among racial and ethnic groups were generally
larger in the higher SES groups. There was one
exception: differences in Asian and White seniors’
performance were not significant.

SES Trend Analysis Summary. The studies
reviewed in this chapter should be considered
with population trends in mind. Clearly, poverty
is more severely concentrated among Hispanic
and African American children than it is among
Whites. Across the various studies of mathematics
achievement, a strong relationship between

SES and mathematics achievement was present.
These studies indicate a need to improve the
mathematics achievement of low-SES students as
a whole, and even more pressing is the need to
raise the mathematics achievement of low-SES
minority students. In light of these findings and
population trends, the need for intervention in the
two geographic regions with the highest poverty
levels—urban and rural communities—

is apparent.
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CHAPTER 3

Opportunity to Learn
Factors: Time, Quality,

and Design

A close look at the achievement trends
reviewed in the prior chapter suggests that student
demographic background is strongly related to
mathematics achievement. This is important to
know; however, demographic background is out of
the control of the teacher, instructional supervisor,
school board member, and other school

personnel. An educator interested in improved
student performance in mathematics must

focus on the variables associated with learning
mathematics that can be influenced by specific
action and intervention. One response to current
student underperformance is to examine how
opportunity-to-learn variables might inform the
design of active intervention on student learning.

Opportunity-to-Learn (OTL) as an important
construct influencing—and possibly explaining—
the impact of instruction, was introduced during
the 1960s. Carroll (1963) included OTL as one
of five critical constructs in his model of school
learning. He defined OTL as the amount of
time allocated to the learner for the learning of
a specific task. If, for instance, the task assigned
a student is to understand the concept of place
value, opportunity-to-learn is simply the amount
of time the student has available to learn what
place value is.

In Carroll’s (1963) model, opportunity-to-
learn is contrasted with the amount of time the
student requires to learn a principle or concept.
This latter construct is largely related to the
student’s aptitude in a concept domain. Thus,

whereas teachers have some control over the
time available for student learning, they have
little control over the time required for student
learning. Carroll also contrasted OTL with the
amount of time the student actually spends
engaged in the learning process. The latter
variable, often referred to as time-on-task or
engaged time, is thought to be affected by the
perseverance of the student and the quality of the
teaching. In Carroll’s model, OTL represents the
maximum value for engaged time.

In contrast to Carroll, Husén (1967) organized
OTL in terms of the relationship between the
mathematics content taught to the student and
mathematics content assessed by achievement
tests. In Husén’s model, OTL is the overlap of
mathematics taught and mathematics tested.
Simply stated, the greater the overlap, the greater
the opportunity-to-learn.’

Scholars, school leaders, and government
agencies have used various combinations of the
Carroll and Husén models to design their own
frameworks of opportunity-to-learn (National
Governors’ Association, 1993; Robitaille &
Travers, 1992; Winfield, 1987, 1993). However,
Stevens (1993a) identified four variables related to
teacher instructional practice and student learning
that consistently emerge in these interpretations.
In this monograph, two of the variables are
combined; thus, the following three variables form
an opportunity-to-learn framework:

7 Carroll’s (1963) and Husén’s (1967) opportunity-to-learn models have two important differences. First, whereas
Carroll’s model describes OTL as an instructional variable (under the control of teachers), Husén’s model frames OTL
as a measurement variable. Second, Carroll describes OTL as a continuous variable, whereas Husén designed OTL as a
dichotomous variable. The most important concern from Carroll’s perspective is how much time the student has to learn a
specific concept. The most important concern from Husén’s perspective is whether or not a student has been provided with
quality instruction relative to the concepts included on achievement tests.

Opportunity to Learn Factors



1. Content exposure and coverage variables
measure the amount of time students spend
on a topic (time-on-task) and the depth of
instruction provided. These variables also
measure whether or not students cover
critical subject matter for a specific grade or
discipline.

2. Content emphasis variables affect the
selection of topics within the implemented
curriculum and the selection of students for
basic skills instruction or for higher order
skills instruction.

3. Quality of instructional delivery variables
reveals how classroom pedagogical strategies
affect students” academic achievement.

The purpose of these OTL variables is to
determine whether or not students are provided
sufficient access to learn the mathematics
curriculum expected for their grade level and age.
According to Stevens (1993b), the OTL variables
are “deceptively simple” (p. 234). In general,
research in this area examines one variable at a
time; however, the OTL conceptual framework
developed by Stevens (1993a, 1993b) encourages
teachers, administrators, and researchers to
examine the interaction of all three variables
simultaneously (see Figure 3).

This theoretical framework will remain a
theory, rather than an active change strategy
for most teachers, unless their work is part of
a coherent “design” that allows them to take
advantage of what is known about opportunity to
learn. Two very important variables that emerge
from the OTL literature are time and quality. Time
and quality are critical variables because they

can be altered with interventions. Thus, time and
quality variables derived from the OTL literature
form a basis for the construction of school design

strategies aimed to improve learning. For purposes

of management and leadership, design is critical.
Think of “design” as an innovative portfolio

of strategies that will provide students appropriate

content exposure, content coverage, content
emphasis, and quality instructional delivery.
The term design is used here to describe how
school personnel can construct and package
opportunities to learn. Those responsible for
the education of children need to be challenged
to accept a greater level of responsibility for
how teaching and learning is organized. Every
educator—teachers, principals, superintendents,
and school board members—should have a clear
understanding of how the school system and,
more specifically, how each school is designed to
improve student performance in mathematics.
Too many educators fail to see the limitation of
longstanding design principles. Still others fail to
recognize existing design principles. Some may
question the need for a transparent opportunity-
to-learn design. However, not having a design is a
design for failure. Each state has a measurement
system to gauge student performance. These
systems are transparent. Similarly, every school
and school district should have a learning design
that is transparent, open to ongoing monitoring,
assessment, and revision.

The appropriate design and management
of OTL variables is central to the improvement
of school mathematics for many students. The
remainder of this chapter will be devoted to the
role of time, quality, and design as they relate

Figure3 Opportunity to Learn: A Theoretical Framework Derived from International Assessments and
Research Studies to Examine Students’ Access to Intended Curriculum

Variable/Related Study Definition

Content exposure and coverage
(Leinhardt & Seewald, 1981; Leinhardt, 1983; Brophy &
Good, 1986; Winfield, 1987, 1993; Suter, 2000)

Teacher arranges class so that there is time-on-task for
students. Teacher arranges adequate time for students to
learn subject matter and to cover adequately a specific topic.
Teacher arranges the curriculum to overlap test content.

Content emphasis

(Floden, Porter, Schmidt, Freeman, & Schwille, 1981;
LeMahieu & Leinhardt, 1985; McDonnell, Burstein,
Catterall, Ormseth, & Moody, 1990; Oakes, 1990; Stevens
1993b; Porter, 1989, 1993; Suter, 2000)

Teacher chooses content from the curriculum to teach.
Teacher chooses the dominant level to teach the curriculum
(recall, higher order skills). Teacher chooses which skills to
teach and which skills to highlight with different groups of
students (ability grouping and tracking).

Quality of instructional delivery
(Brophy & Good, 1986; Stevenson & Stigler, 1992;
Stevens, 1993b)

Teacher uses different pedagogical strategies to meet
the learner’s needs. Teacher has understanding of the
subject matter.
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to student OTL with traditionally underserved
student groups.

Time and School Mathematics

Policies and practices that influence content
coverage and time on task in school mathematics
are pivotal to the improvement of student
performance in the domain. The purpose of
studying these opportunity-to-learn variables

is to determine whether or not students are
provided sufficient time to learn the mathematics
curriculum expected for their grade level and age.
One very basic principle related to time should be
transparent in every classroom. Significant time
should be dedicated to mathematics instruction
each school day. Further, appropriate time

should be allotted to ensure students develop
understanding of key concepts and procedures.®
Many factors can influence whether or not this
basic principle is followed. In this section, several
factors related to time and school mathematics
will be reviewed.

Course-Taking. Two of the most powerful
predictors of school mathematics achievement

in large-scale assessments of mathematics have
been (a) increased time on task in high-level
mathematics and (b) the number of courses taken
in mathematics. Generally, these two predictors
are interrelated. Evidence indicates that African
American, Hispanic, and low-SES students are less
likely to be enrolled in higher-level mathematics
courses than middle-class White students
(Secada, 1992). Further, White students on
national assessments of mathematics achievement
consistently outperform African American and
Hispanic students. Thus, it is not shocking that

a positive relationship between mathematics
achievement and course taking exists across

measurement systems (e.g., NAEP, SAT, and ACT).

Course-taking options in the United States
are organized in a technology that takes on
two forms—curricular and ability tracking.
Many comprehensive high schools offer a wide
range of mathematics courses linked to various
work-related opportunities. No student could

experience all of the coursework, so schools design
technologies to regulate the selection process. To
this end, students in most high schools are sorted
into a curricular track involving a specific course
sequence and, ultimately, different opportunities
to learn mathematics. Generally, three curricular
tracks—college preparation, vocational, and
general education—are offered within most
traditional high schools. It is clear that the college
preparation track has higher status and provides
greater opportunity to learn more demanding
mathematics. Curricular tracking has serious
implications for student opportunity to learn
mathematics.

Similarly, ability tracking is a technology used
to sort students into curriculum experiences.’
This mechanism for sorting provides different
levels of instruction to students across two tracks
based on perceived ability. This version of sorting
is more difficult to recognize because course
labeling can disguise the practice. For example,
schools may offer two different courses in
geometry. Both may have the same title; however,
the mathematics covered in each course may
differ in dramatic ways. Another sorting strategy
is to offer students different entry points into
the college-preparatory coursework at different
times (e.g., freshmen year versus junior year).

The organizational structure of the school may
recognize many tracks or just a few; schools may
or may not link tracks to a block of courses or to
mathematics only; and schools may have loosely
or tightly coupled curricular and ability tracking.
Additionally, students may or may not have the
option to move across tracks. The opportunity

to negotiate new curricular possibilities is an
important equity consideration.

Tracking is a serious challenge to mathematics
achievement and opportunities to learn
mathematics. In theory, tracking as a technology
is designed to benefit all students. However,
evidence strongly suggests that this goal is not
being accomplished (Hoffer, Rasinski, and Moore,
1995). Instead, research studies have indicated that
even when tracking systems have positive effects,
those effects are more closely associated with those

8 Sufficient and appropriate time to learn the mathematics curriculum should be a data-driven decision. Certain mathematical
concepts are more difficult to understand. System-wide data can inform the process as well as classroom-based assessments.
Both assessment formats are informative with respect to determining the amount of time to devote to a concept.

® T use the term ability grouping because this is consistent with the literature on tracking. However, a more appropriate term is

perceived ability.
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students assigned to high-status tracks (Oakes,
1990; Rock and Pollack, 1995).

One possible solution to the differential
opportunities to learn across tracks is to constrain
the curriculum options in mathematics at the
secondary level. Currently, African Americans
and Hispanic students are over-represented in
vocational programs and low-track options. Lee,
Croninger, and Smith (1997) found that students
learn more mathematics in schools that offer
them a narrow curriculum composed of college-
preparatory academic courses. This research is
suggestive, rather than definitive.

A word of caution: “Course-taking patterns
are an important indicator of system quality.” It
is quite possible that many students are enrolled
in low-track mathematics courses due in part to
prior experiences in elementary and middle school
mathematics. Merely mandating a narrower
curriculum consisting of college prep mathematics
will not address the endemic quality problem
of the preK-8 mathematics program. Thus, it is
imperative that curriculum constraints toward
the college prep model at the secondary level
occur in tandem with a close examination of the
preK-8 effort.

One state-level change strategy to improve
elementary and middle school mathematics is
to align the mathematics curriculum with state
assessments. This model has implications for
time and school mathematics. The next section
examines this strategy.

Assessment Practices. The mathematics
curriculum in many school districts is aligned
with mathematics standards adopted or derived
from state or national curricular frameworks.

The standards-based reform of mathematics
education is often part of a larger systemic change
effort that includes: academic standards in the
core disciplines by grade, holding all students

to the same standards, statewide assessments
closely linked to the standards, accountability
systems with varying levels of consequences for
results, computerized feedback systems, and data
for continuous improvement (NRC, 1999[a]).
State-level assessment systems and most national
testing proposals call for students to be tested in
mathematics and reading (NRC, 1999 [b]). This
practice has implications for content coverage and
time on task in mathematics classrooms in urban
school districts and other school systems with

large percentages of traditionally underserved
students.

Students’ opportunities to learn mathematics
are influenced by the assessment policies of
the school district. Assessment policy often
influences the nature and pedagogy in a
classroom. The influence of standardized
tests—and, more recently, state-mandated
testing—is arguably greater in high-minority
classrooms. In a nationwide survey, teachers of
high-minority classrooms reported test-specific
instructional practices more often than teachers
of low-minority classrooms (STEEP, 1992). For
example, in high-minority classrooms, about
60% of the teachers reported teaching test-taking
skills, teaching topics known to be on the test,
increasing emphasis on tested topics, and starting
test preparation more than a month before the
examination. These practices were reported
significantly less often in low-minority classrooms.
Moreover, mathematics teachers with high-
minority classes indicated more pressure from
school district officials to improve test scores than
teachers with low-minority classes.

Today, school districts across the country use
testing technology as a mechanism to measure
school and student progress. However, the role
of testing technology is much greater than
measurement concerns. Tests do change or at
least influence teaching behavior. Many districts
are ignoring best practice related to assessment
and school mathematics. Two recommendations
related to school mathematics and student
assessment performance are listed below:

1. Design a curriculum, select quality
instructional materials, align curriculum and
instructional materials, and then use aligned
instructional materials all year. Testing
systems are intended to measure the quality
of a school’s instructional program. Avoid
spending significant time on test preparation.
If the combination of the curriculum,
instructional materials, and teaching fall short
of school district goals, then these factors must
be reviewed and improved upon.

2. Use state and classroom assessment data as
a way to build a solid instructional program
linked directly to student thinking in the
content domain.
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Fiscal Adequacy. Limited course-taking options
and narrow assessment practices are compounded
by problems of fiscal inadequacy and resource
distribution. The Council of Great City Schools
[CGCS](1992) calculated that the average-per-
pupil expenditure in 1990-91 was $5,200 in large
urban school districts compared with $6,073

in suburban public school systems. Although
both types of school systems allocated about

62% of their budgets to classroom instruction,
urban schools spent about $506 less per child

on instruction. While this study does not use
current data related to fiscal resources, it reflects

a growing fiscal disparity between urban school
systems and some suburban systems, and
illustrates an important point. How money is
spent should be examined carefully. For example,
the Commissioner of Education of New York State
reported, “The more advantaged districts (in New
York state, my addition) spend over $3,000 more
per student and pay their teachers $20,000 more
annually. Students in more advantaged districts
are substantially more likely than students in less
advantaged districts to perform with distinction
on Regents examinations, and they are more

than twice as likely to plan to attend four-year
colleges” (2002, pp. vi-vii)."” The CGCS (2003)
calculated that the New York Public Schools
would need $12,537 per pupil to have the resources
equivalent to the highest achieving school districts
in the state."! The fiscal support undergirding
instructional practice has implications for
meeting new and more challenging demands in
mathematics education.'?

Over the past decade, the average-per-pupil
expenditure has constantly increased for urban
and suburban school districts. Yet, as Cohen,
Raudenbush, and Ball (2003) propose, rather than
focus on fiscal resources as the center of research
and policymaking, teaching and learning should
be centered, and questions of adequate fiscal
resources should derive from carefully planned
instructional programs. The call for “Mathematics
for All” or “Algebra for All” associated with many
state content standards proclamations has placed
new demands on urban school systems to prepare

larger numbers of students in content traditionally
reserved for a small percentage of students. Never
before has there been a greater need to extend the
amount of time students have with mathematics
content that is aligned to state curriculum guides
and appropriate tests.

Unfortunately, the old saying “time is money”
is directly applicable to the implementation of
design strategies capable of providing students
more time on task in mathematics. Some
considerations related to extending time for
students in mathematics are listed below:

+ Preschool availability

« Early intervention programs for low
performing schools

+ Extended school day opportunities
« After- and before-school tutorial programs
+ Saturday school

« Summer school enrichment for all students
(not just remediation)

« Community college/university programs
« Longer school day and/or expanded year
+ Enrichment and mentoring programs

+ More individualized or small group
instruction

Each of the strategies listed is integral to
a standards-based approach to educational
policymaking. These strategies require a sound
vision that is directly linked to fiscal policy.
State standards provide an opportunity to plan
for success. A simple planning strategy includes
(a) adopting a set of mathematics standards,
(b) identifying resources needed to achieve the
standards (including time-related strategies),
(c) formulating a long-term plan that aligns the
standards and resources, (d) developing the plan
before spending money, and (e) adopting the
necessary structural changes to maximize cost-
effectiveness (e.g., Clune, 1997). Planning for more
engaged time in mathematics is a purposeful act
that should be aligned with fiscal management. A
school district’s portfolio of mathematics practices
and interventions should be clearly aligned to

' See http://www.emsc.nysed.gov/irts/655report/2002/home.html (cited August 2, 2004).
' See http://www.cgcs.org/pdfs/NYBrief.pdf (cited August 2, 2004) to review this analysis.

12 Additional reports by the Council of Great City Schools suggest the need for system leaders to continue examining how their
systems use resources on instructional components (see e.g., http://www.cgcs.org/taskforce/finance3.html).
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uniform content goals and fiscal management. Too
often, districts fail to produce aligned practices
and fiscal policy. Yet, a portfolio of aligned
practices, interventions, and fiscal policy is the
essence of a district’s learning design.

Quality and School Mathematics

It should be obvious to most observers that the call
for more demanding standards in mathematics is
a signal for not only what students must know but
also what teachers must understand and school
systems must support. High standards in school
mathematics demand quality instruction and sup-
porting infrastructure. The purpose of this section
is to examine quality factors that influence math-
ematics instruction.

The OTL literature defines quality as
classroom pedagogical strategies that affect
students’ academic achievement. In this case,
quality is defined as those pedagogical strategies
that positively influence student achievement in
school mathematics. Before discussing quality
factors, a baseline review detailing what is typical
with respect to mathematics pedagogy is helpful.

Traditionally, mathematics pedagogy has
emphasized whole-class lectures with teachers
modeling one strategy for solving a problem and
students passively listening to the explanation.
Generally, the lecture is followed by students
working alone on a large set of problems that

Figure 4

Higher-Performing Schools

Teachers and students participate in two-way
conversations about mathematical ideas.

reflect the lecture topic (Fey, 1981; Porter, 1989;
Stodolsky, 1988). The purpose of the lecture and
problem set is to prepare students to produce
correct responses to narrowly defined problems.
This pedagogical strategy is often coupled

with curricular or ability grouping, with many
African American and Hispanic students selected
to participate in compensatory mathematics
programs that focus on the mastery of low-level
computational skills (Strickland & Ascher, 1992).
These phenomena are so “normal” in many
schools, they have become cultural artifacts.

The achievement trends as a result of this model
of instruction were reviewed earlier in this
monograph.

In contrast, high-quality mathematics
programs generally deviate in important ways
from the “normal” approaches to mathematics
instruction and classroom practice. A comparison
of mathematics teachers in higher- and lower-
performing schools conducted by the North
Central Regional Educational Laboratory
(NCREL, 2000) revealed important quality
factors related to instruction. The findings are
summarized in Figure 4.

It is important to note that the NCREL
findings must be understood in light of the
centrality of students’ mathematical reasoning in
higher-performing schools. Higher-performing
schools and teachers provide a learning
environment that supports sustained engagement

Lower-Performing Schools

Conversations tend to be one-way: The teachers tell
information to students or look for answers and move on.

Classes exhibit the characteristics of learning
communities. There are norms in place so students
and teachers are learning together.

Classes have few learning community characteristics.
Individuals are more disconnected.

Teachers push for mathematical meaning behind
the task.

Teachers lead math tasks; however, meaning-oriented
discussion is missing.

Teachers have high expectations that all will learn.

They review concepts often, explain things thoroughly,
invite student thinking, and assess student competence,
and re-teach when necessary.

The expectation is that there will be other sources of help
that will fill in gaps for struggling students.

Teachers build continuity in the mathematical domain
from day to day.

Little continuity is built into mathematical content from
day to day.

Students are comfortable with classroom routines and
expectations and take initiative in their progress. (They
know where to find enrichment materials when finished
with an assignment and get started on their own.)

Classroom routines are teacher initiated rather than student
initiated. Lots of teacher reminding of expectations.
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on rigorous mathematical tasks. Teaching as
characterized in the higher-performing schools is
complex and demanding. In contrast, the teaching
in lower-performing schools is routine and
limited with respect to teacher-student discourse
patterns. Further, instructional practices in lower-
performing schools do not center on students’
mathematical understandings and thinking.

The characteristics found in teachers working in
higher-performing schools can be supported in
other schools by administrative planning

and instructional leadership with the following
specific actions:

« Provide professional development that
prepares teachers to focus on mathematical
understandings and reasoning.

» Provide ongoing professional development
focused on content, effective instruction, and
student thinking in the content domain.

« Design a curriculum that provides sufficient
exposure to difficult concepts.

« Develop programs to address the impact
of student/teacher mobility in low-
performing schools.

Each of these quality factors will be discussed
in greater detail. The focus of the discussion
will center on why these factors are key support
mechanisms for achieving the quality teaching
characteristics indicated in the NCREL study.

Quiality Professional Development. What are
the “best practices” related to the professional
development of mathematics teachers? Every year,
school districts sponsor thousands of professional
learning opportunities for teachers. There has
been a gradual shift in thinking about professional
development in many sectors including education
and the corporate world (Meister, 1998). A
summary of recent shifts in emphasis related to
professional development is provided in Figure 5.

Are shifts in thinking about professional
development (as reflected in Figure 5) consistent
with research in mathematics education and
teacher learning? What works?

Garet and colleagues (2001) conducted
the first large-scale empirical comparison of
effects of different characteristics of professional
development on teachers’ learning. The study used
a national probability sample of 1,027 mathematics
and science teachers. The results confirm and
extend the literature on “best practice” in several
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ways. The study confirms past literature in that
the research indicates sustained and intensive
professional development is more likely to
influence teacher learning, as reported by teachers,
than shorter professional development. Also, the
research indicates that professional development
that focuses on academic work (content), provides
teachers opportunities for “hands-on” work (active
learning), and is integrated into the daily life of
the school (coherence) is more likely to result in
enhanced knowledge and skills.

Garet and associates (2001) extend what
is known about professional development and
confirm speculation in the following manner:

Our results provide support for previous
speculation about the importance of
collective participation and the coherence
of professional development activities.
Activities that are linked to teachers’ other
experiences, aligned with other reform
efforts, and encouraging of professional
communication among teachers appear to
support change in teaching practice, even
after the effects of enhanced knowledge
and skills are taken into account. Such
coherence has been hypothesized as
important, but with little direct empirical
support in the literature to date. Similarly
our data provide empirical support that
the collective participation of groups of
teachers from the same school, subject,

or grade is related both to coherence and
active learning opportunities, which

in turn are related to improvements in
teacher knowledge and skill and changes
in classroom practice. (p. 936)

This study suggests that if those who are
concerned about education are serious about
improving the quality of teaching in mathematics
classrooms, they need to support and invest in
professional learning opportunities for teachers
that foster enhanced instructional practice.

A major challenge to the kind of professional
development outlined in this study is cost.

It is very important that sufficient resources
be in place to support a quality professional
development model.

Quality Curriculum. The need for a demanding
mathematics curriculum aligned with high-
quality instructional materials is intuitively



Figure 5 Professional Development Paradigm Shift from Staff Training to Learning

Old Training Paradigm

Learning Paradigm

Central Office Location On Demand—Anywhere

Upgrade Math Skills Content Build Core Workplace Competencies

Lecture Methodology Action Learning

Individual Teachers Audience Intact Teams of Teachers, Principals, other
Staff

External University Faculty Internal Senior-level District Staff and a

Professor/Consultants Consortium of University Professors and
Consultants

One Time Service Frequency Continuous Learning Process

Build Teacher’s Inventory of Skills Goal Solve Real Education Issues and Improve
Classroom Teaching

Source: Adapted from Meister 1998.

obvious. Unfortunately, there is often confusion
about the relationship between curriculum and
instructional materials. Many systems purchase
instructional materials and then treat them like

a curriculum. Teachers strive to teach the book
from cover to cover with little reflection about the
curriculum. In other school districts, curriculum
guides are designed, distributed at one-day
workshops, placed in school storage, and never
used again.

There is serious need for quality district-level
curriculum guides in mathematics. In many
states, the state-level curriculum framework offers
little guidance related to focus; instead, litanies
of discrete topics are listed. At the school-district
level, curriculum quality can be achieved if the
following recommendations for developing and
implementing guides are taken seriously:

« Focus on mastery objectives only.
« Reduce the scope of coverage.

+ Provide and support the development of more
cognitively demanding enrichment materials.

« Allow for variations in completion time and
instructional strategy.

« Provide quality instructional materials to
schools in a timely fashion.

+ Educate principals by focusing their learning
opportunities on the relationship between the
curriculum guides, district achievement goals,
and test materials.

In the world of high-stakes testing, there is
tremendous pressure, real or perceived, to teach
to the test. A high-quality curriculum guide
that demonstrates an alignment between the
instructional materials (including the enrichment
materials) and assessment tasks is more likely to
result in students’ experiencing a coherent and
cognitively demanding mathematics classroom
than pure reliance on test guidelines.

Mobility and Mathematics. How do schools
address the challenges to quality mathematics
instruction presented by student and teacher
mobility in low-performing schools? High
mobility causes a great deal of stress on campus
officials attempting to serve these students. In the
context of high mobility, a quality curriculum
guide that standardizes the curriculum and
instructional materials is vital. While schools and
classes may deviate on pacing, teachers have a
reasonable opportunity to meet individual needs
if the curriculum guide has narrowed the coverage
and focused on mastery objectives. Further, it is
very important that individual student data is
transmissible to the new school setting. This will
give the teacher an opportunity to construct a
data-driven program of study for the student.
Teacher mobility in low-performing schools
also is a major problem. Often, new teachers to a
system are sent to low-performing schools. The
result is not surprising. These teachers either
leave the profession or get seniority and transfer
to another school. This pattern is consistent and
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endemic. The result: low-performing schools are
constantly staffed by less experienced teachers
and, in many situations, by teachers with
emergency teaching certificates.

It is time for new models of operating in
these schools. Questions related to how to
retain teachers in low-performing schools
require empirical evidence. Here are a couple of
speculations on the issue. Retention of teachers in
challenging settings may be linked to instructional
leadership. Good principals create learning
communities that support teachers and students.

Another potential strategy involves the
recruitment process. Perhaps cohorts of well-
established teachers can be recruited with
incentives to low-performing schools. The
emphasis is on cohort. The goal in this strategy is
to embed a core group of excellent teachers in the
school setting to influence and mentor the less
experienced teachers.

Clearly, it is a disservice to new teachers and
students to place novice teachers in the most
challenging settings. Remedies to the mobility
problem will require major rethinking in the
areas of human resource management and fiscal
management. Moreover, mobility issues are often
compounded with other system challenges like
cultural factors and student language background.

Culture and Mathematics Learning. Today, many
calls for equity in mathematics education borrow
from opportunity-to-learn constructs found in
national and international testing programs. In
fact, OTL constructs are foundational in this
monograph. These constructs frame equity largely
as the overlap of content taught and content tested.
The overlap of content taught and content tested is
a serious policy concern. Moreover, opportunity-
to-learn constructs have additional explanatory
power if aligned with the cultural factors that
influence students’ mathematics learning (Tate,
1995). Research suggests that equity-related
policies in mathematics education should carefully
consider incorporating recommendations found
in the Professional Standards for Teaching
Mathematics (NCTM, 1991), which call for
mathematics pedagogy to build on (1) how
students’ linguistic, ethnic, racial, gender, and
socioeconomic backgrounds influence their
learning; (2) the role of mathematics in society
and culture; (3) the contribution of various
cultures to the advancement of mathematics;
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(4) the relationship of school mathematics to
other subjects; and (5) the realistic application
of mathematics to authentic contexts (see e.g.,
Ladson-Billings, 1994; Moses and Cobb, 2001;
Nelson-Barber and Estrin, 1995; Meyerson, 2002;
Rousseau and Tate, 2003; Secada, 1996).

The first NCTM recommendation calls
for understanding how demographic group
membership may be linked to the learning of
mathematics. This recommendation is consistent
with No Child Left Behind legislation that requires
a national accounting of student performance in
mathematics by demographic group. However,
gathering achievement data by demographic
group is very different than reflecting on race-
related achievement patterns. Rousseau and Tate
(2003) found that mathematics teachers in their
study were reluctant to reflect on race and student
performance in mathematics. Instead, some
teachers in their study indicated they were color-
blind and did not notice race or attend to matters
of race-related patterns of student achievement.
Further, many of the teachers were unwilling to
link poor student performance to their teaching or
other school-related factors. There was a tendency
by the teachers to blame the students and their
families. This kind of practice represents a unique
challenge for instructional leadership attempting
to engineer school mathematics improvement. The
challenge suggests a need for professional practice
among teachers and school leaders that differs
radically from traditional formats. The need for
study groups composed of teachers and school
leadership is clear. These groups must foster trust
and openly communicate about data and students;



in particular, the challenge of discussing race and
culture must be met (e.g., Tatum, 1992).

There are other cultural factors in school
mathematics related to quality design and school
change. Many of these cultural factors largely
deal with the aim of school mathematics. More
specifically, the nature and extent the school
mathematics curriculum is linked to the liberal
arts tradition of reasoning and inquiry in
contexts broader than the problems and concepts
found in the discipline of mathematics. Should
school mathematics include investigations
of how mathematics is used in society and
culture? For example, how relevant is political
numeracy? Mathematics is part of many aspects
of the democracy and can inform the reasoning
associated with policy formation and policy
analysis. Is this appropriate for middle school or
high school students?

Some teachers have embarked on student-led
integrated problem-solving investigations that
include mathematics, statistics, legal analysis,
multimedia techniques, scientific method, and
connections to other disciplines (Tate, 1995). The
approach is consistent with calls for authenticity
in mathematics instruction (Meyerson, 2002).
This strategy is designed to build on students’
interest and to provide a liberal arts approach to
the middle school and high school experience.
However, the liberal arts approach may not be
consistent with the current demands of high-
stakes testing environments. Any disconnect
between the liberal arts perspective of schooling
and mathematics education is worthy of
discussion by teachers, instructional leaders
and policymakers.

Similarly, for some elementary instructional
leaders providing an integrated learning
experience that connects mathematics, science,
and reading is desirable. This kind of integrated
approach has many merits including efficient use
of time and building on best practice in early
childhood education (Bredekamp and Copple,
1997). If the culture of testing, specifically test
preparation activities, substitute for real learning
experiences and best practice, then long-term
skills like student reasoning ability may
be sacrificed.

Language and Mathematics Learning. In a policy
analysis of urban students acquiring English and
learning mathematics in the context of reform,

Secada (1996) raised the following two questions:
“Should their [urban school, my addition] efforts at
reforming school mathematics specifically address
the status of students acquiring English? Or should
urban schools assume that these students’ needs will
be addressed under the broader aegis of reform?”

(p. 422). Secada argued that failure to consider the
specific learning needs of students acquiring English
would be a mistake. He maintains it might be useful
for educators to examine common learning processes
that cut across language learning and mathematics
learning. Two potential areas of analyses include

(1) psychological processes that are common to
understanding language and mathematics and (2)
sociolinguistic and cultural processes that support
the creation of discourse communities in school
including how sense making takes place and is
validated in these communities (e.g., Kinstch &
Greeno, 1985; Lampert, 1990; Stanic, 1990). Secada
(1996) described a potential scope of work for
educators related to bilingual education and school
mathematics. Secada (1996) stated:

Newly developing models for teaching
mathematics should be scrutinized for

their applicability to bilingual learners

and adapted as necessary. The limitations

of evolving ways to teach mathematics
(Lampert, 1990) is a reason to question, but
not reject, the developing visions for teaching
mathematics (NCTM, 1991). Maybe, with
some adjustments—specifically inviting these
students to add their thoughts, encouraging
them to use their native languages and asking
others to translate, slowing down the fast-
pace tempo of the classroom, creating an
atmosphere in which language variation in
the community of discourse is an accepted
fact of life—these methods can apply to
bilingual learners. (p. 440)

Secada’s remarks concerning bilingual learners
and school mathematics focused on the importance
of modifying instructional time and appropriate
instructional accommodations—both critical OTL
variables. Time and quality factors permeate the
discussion of the research-based cases of the
next chapter.
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CHAPTER 4

Research-Based
Cases of School

Mathematics Reform’

In every mathematics reform effort, significant
time should be devoted to information gathering
and group study of other similar change efforts.
Learn as much as possible about related design.
The intent of this chapter is to review a select set of
research-based cases to serve as a model for your
future information-gathering activities.

The group of studies reviewed in this chapter
were included for three reasons. First, the studies
were part of large multi-year projects focused on
classroom-based research. These studies provide
insight into how time, quality, and design interact
to produce positive academic results in school
mathematics. In each of the projects reviewed,
student performance in mathematics improved
over time. Second, each project at some point
examined equity-related concerns, and looked
to intervene in school settings where student
proficiency in mathematics was underdeveloped.
Finally, each project was included because
participants engaged in an effort to reform school
mathematics in a manner that was consistent
with the teaching practices and/or curricular
goals found in the National Council of Teachers
of Mathematics (NCTM) reform documents or
state/local mathematics standards. Moreover, the
three projects included comprehensive research
and evaluation components including data on
student advancement and other educationally
relevant indicators of progress. The research and
evaluation aspect of these projects are important
because of the rapid advancements of state

standards. Massell (1994) reported 41 states have
adopted mathematics standards that at least in
part are consistent with the NCTM standard
series. A brief history of this series is warranted.
In 1980, NCTM, a professional organization
of mathematics teachers, supervisors, and college
professors, released An Agenda for Action, which
described a 10-year reform process. A central goal
of An Agenda for Action was to move the focus
of school mathematics from a strictly basic skills
curriculum to a more balanced approach that
included more demanding mathematics content
and appropriate pedagogy to implement this
content. Subsequently, but not as a direct result
of An Agenda for Action, NCTM sponsored the
development of the Curriculum and Evaluation
Standards for School Mathematics (1989), the
Professional Standards For Teaching Mathematics
(1991), the Assessment Standards for School
Mathematics (1995), and most recently, Principles
and Standards for School Mathematics (2000).
These documents were a product of extensive
literature reviews and a series of technical reports
that described key themes and ideas in school
mathematics. This series of reform documents
and the movement to reform school mathematics
are important from an equity perspective. Past
reform efforts have failed to significantly improve
opportunity to learn mathematics for African
American, Hispanic, and low-SES students (Tate,
1996). Thus, a close review of more recent reform
efforts is part of the process of learning to build.

3 Additional information about these cases can be found in Tate and Rousseau (2002) and the January 1996 issue of Urban
Education. There is some overlap in the evidence presented in this monograph and the Tate and Rousseau article. Adaption
of this work is with permission from the Handbook of International Research in Mathematics Education, Lawrence Erlbaum
Publishers. The cases are presented in this monograph to highlight the importance of time and quality factors.
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Cognitively Guided Instruction (CGl)

Researchers at the University of Wisconsin
developed Cognitively Guided Instruction (CGI).
The CGI foundation was in part established on
Carpenter and Moser’s (1983) analysis of young
children’s learning of addition and subtraction.
Subsequently, other research was conducted to
understand how teacher knowledge of children’s
thinking would affect teachers’ pedagogical
actions and student learning (Carpenter, Fennema,
Peterson, Cary, 1988; Carpenter, Fennema,
Peterson, Chiang, & Loef, 1989). This research
suggested that knowledge extracted from studies
of learners’ thinking can be used by teachers to
strategically influence students’ learning. The
CGI research program supports the argument
that knowledge of students’ thinking, when
integrated, robust, and a part of the established
curriculum, can affect the teaching and learning
of mathematics (Fennema & Franke, 1992).
Carpenter and colleagues (1999) described the
CGI design process and model as follows:

Our research has been cyclic. We started
with explicit knowledge about the
development of children’s mathematical
thinking, which we used as a context to
study teachers” knowledge of students’
mathematical thinking and the way
teachers might use knowledge of students’
thinking in making instructional
decisions. We found that although
teachers had a great deal of intuitive
knowledge about children’s’ mathematical
thinking, it is fragmented and, as a
consequence, generally did not play an
important role in most teachers’ decision
making. If teachers were to be expected
to plan instruction based on knowledge
of students’ thinking, they need some
coherent basis for making instructional
decisions.... We designed CGI to help
teachers construct conceptual maps of the
development of children’s mathematical
thinking in specific content domains.

(p. 105)

CGI is not associated with particular
instructional materials. Moreover, CGI does
not have an explicit equity component, nor is
it targeted at a particular group of students.

However, it has been successfully implemented in
classroom settings with diverse student groups.

For example, Carey, Fennema, Carpenter,
and Franke (1995) described CGI classrooms
in a predominantly African American school
district. Twenty-two first-grade teachers from 11
schools in Prince George’s County, Maryland,
an urban school setting bordering Washington,
D.C., participated in a research project organized
to evaluate the efficacy of CGI with African
American students. The student demographics
in the classrooms of the study exceeded 70%
African American. Further, seven of the 11
schools participated in Chapter 1, a federally
funded program of Title 1 of the Elementary
and Secondary Act, a good indicator of high
concentrations of low-income students in a
school. The teachers who participated in the study
attended a two-week summer in-service program
that was followed with five full-day professional
development days offered during the academic
year. The researchers documented a change in the
teachers’ implemented mathematics curriculum,
with a greater focus on problem solving beyond
that typically associated with the first-grade
curriculum. The teachers also displayed an ability
to take advantage of student thinking about
important mathematical ideas, ultimately building
on student understanding to establish new
knowledge of school mathematics.

Villasenor and Kepner (1991) reported on the
implementation of CGI in a minority context. The
study was carried out with 12 treatment classes
and 12 control classes in which the percentage of
non-White populations ranged from 57% to 99%.
The CGI group performed significantly better on
a 14-item word problem posttest, an interview on
word problems, and an interview on number facts.
The CGI students also used advanced strategies
significantly more often than non-CGI students on
both problem solving and number facts. Peterson
and colleagues (1991) argued that “Villasenor’s
results are important because they provide
concrete evidence for the effectiveness of the CGI
approach with a disadvantaged population of
students” (p.78).

The CGI studies suggest that an important
set of quality factors related to mathematics
instruction are how well teachers (1) understand
the structure of a specific mathematical concept,
(2) understand students’ thinking about the
particular mathematical idea, and (3) implement
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instructional strategies that build on this
knowledge of student thinking. As a set, these
quality factors are powerful indicators of good
instruction with a strong relationship to student
learning and performance on outcome measures.

Project IMPACT

Project IMPACT “is a school-based teacher
enhancement model for elementary (K-5)
mathematics instruction designed to foster
student understanding and to support teacher
change in predominantly minority schools”
(Campbell, 1996, p. 449). There were six schools
involved in the original study (three treatment
and three control). The model involved (1) a
summer in-service program, (2) an on-site
mathematics specialist in each school, (3)
manipulative resources for each classroom, and
(4) teacher planning and instructional problem
solving during a common grade-level planning
period each week. The focus of the model was
on instructional approaches consistent with a
cognitive perspective on learning, emphasizing
interaction and collaboration rather than the
typical direct instruction approach.

Unlike CGI, Project IMPACT focused
specifically on teaching for understanding in
urban schools. Thus, content addressing “teaching
mathematics in culturally diverse classrooms”
was included in the program’s summer in-
service. Supported by campus-based mathematics
specialists, instructional change occurred in
most treatment classrooms, particularly where
the instructional leadership by the principal
encouraged and embraced the reform process.
The students in these schools were assessed in
the middle and at the end of each school year.
Campbell (1996) summarized the results:

The influence of the IMPACT treatment on
student achievement was not immediate.
The students in the IMPACT treatment
schools did not evidence statistically
significant higher achievement, as
compared to the students in the
comparable-site schools, until the middle
of second grade; however, once established,
this mathematics differential continued
through second and third grade. (p. 463)

White (1997), in her dissertation, examined
the nature of questioning in four third-grade
classrooms both before and after the teachers went
through the Project IMPACT summer in-service
program. The study documented the question-
response pattern, the cognitive level of the
question (low or high), and the race and gender
of the students who responded. White found that
students’ educational experiences, as reflected
in classroom questioning, differed both between
and, in some cases, within classes. There were two
teachers, Ms. Davis and Ms. Tyler, who were fairly
equitable in their distribution of questions."* “They
posed questions to all students across questioning
patterns and cognitive levels” (White, 1997,

p. 300).

In Ms. Atkins’ class, however, the distribution
was more skewed. Overall, females answered
the majority of the questions. Yet, a look at the
different cognitive levels reveals racial patterns
as well. White and Asian females answered most
of the high level questions. Black and Hispanic
female students were asked a relatively low
number of high-level questions. According to
White (1997), the origin of this disparity lies in
Ms. Atkins’ perceptions of students’ academic
ability and her own discomfort with mathematics.
Ms. Atkins wanted to ask high-level questions, but
her own lack of understanding caused her to call
only on students whom she thought would give the
correct answer. Thus, only the students perceived
to be of high ability were selected to answer high-
level questions. A similar pattern of focusing only
on the students who were perceived to have the
greatest mathematical understanding was found in
the class of the fourth teacher, Ms. Smith.

This very detailed study of question and
response patterns is important for at least two
reasons. First, it documents a partial success story
for Project IMPACT in terms of improving equity
in classrooms. Two of the four teachers appeared
to change their practices as a result of their
participation in the initial IMPACT summer in-
service and ongoing campus level assistance. Both
Ms. Davis and Ms. Tyler were more equitable in
their distribution of questions after the in-service
than they had been before.

This study is also important because it
suggests the need to look closely at teachers’
explanations for their actions in order to more

1 The names were changed to protect the identity of the teachers.
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fully understand what is happening in the
classroom. For example, the case of Ms. Atkins
indicates that teachers’ inequitable actions can
originate from a variety of sources, including
inadequate content knowledge.

Project IMPACT suggests that another quality
indicator related to mathematics instruction is
the relationship between teachers’ knowledge of
mathematics, teachers’ understanding of student
thinking about mathematics, and teachers’
understanding of race/gender interactions in
classroom settings. Project IMPACT is consistent
with other research programs that indicate the
importance of treating cultural background as a
resource for learning (Rousseau and Tate, 2003).
For example, Knapp (1995) found that teachers
in high-poverty schools who placed the greatest
emphasis on meaning in their mathematics
instruction made two significant shifts in their
thinking about learners. First, they viewed
learners as active participants in learning, and
second, the teachers used cultural dimensions of
instruction to sustain engaged time with academic
work. This also is an important lesson from
Project IMPACT.

QUASAR

QUASAR is described as “an educational reform
project aimed at fostering and studying the
development and implementation of enhanced

-
|

/

/"

mathematics instructional programs for students
attending middle schools in economically
disadvantaged communities” (Silver & Stein, 1996,
p- 476). One purpose of the project was to help
students develop a meaningful understanding

of mathematical ideas through engagement with
challenging mathematical tasks. The QUASAR
project supported teachers and administrators in
six urban middle schools. Each school site worked
with a resource partner—typically, mathematics
educators from local universities—to improve

the school’s mathematics instructional program
with a focus on mathematical understanding,
thinking, reasoning, and problem solving. The
site teams operated independently in the design
and implementation of its curriculum plan,
professional development, and other features of
its instructional program. There were regular
interactions among representatives from all
QUASAR sites. Moreover, each site-based team
benefited from financial support, technical
assistance, and advice from the QUASAR staff
housed at the Learning Research and Development
Center at the University of Pittsburgh.

Silver and Stein (1996) describe three
different analyses used to assess the effectiveness
of instruction in QUASAR sites. Unlike the
CGI and IMPACT studies, there was no control
group in the QUASAR study. One method used
to determine the impact of QUASAR was the
examination of changes in student performance
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over time. The results from the first three years of
the project indicated that “students developed an
increased capacity for mathematical reasoning,
problem solving, and communication during

that time period” (Silver & Stein, 1996, p. 505).

A second method of evaluation used a variety of
tasks from the National Assessment of Educational
Progress (NAEP) as pseudo-control groups (Silver
& Lane, 1995). The QUASAR students were given
items from the 1992 eighth-grade NAEP. The
results were compared to those of NAEP’s national
sample and disadvantaged urban sample. The
findings from the analysis of student performance
on the nine open-ended tasks were very
informative about the effectiveness of QUASAR.
QUASAR students performed at least as well as the
national sample on seven of the nine tasks. Silver
and Lane (1995) noted that this is an important
result, in light of the fact that the national sample
had significantly outperformed the disadvantaged
urban sample on all nine tasks. They stated:

The findings clearly suggest that the
mathematics performance gap between
more and less affluent students has

been significantly reduced for students
attending the QUASAR schools. Thus, the
performance of QUASAR’s students is far
greater than would have been expected,
given their demographic similarity to
NAEP’s disadvantaged urban sample,
and one can infer that the instruction

at QUASAR has a beneficial impact on
students’ mathematical performance.
(Silver and Lane, p. 62)

A third method of evaluation examined
outcomes other than achievement, considering
whether QUASAR instruction was linked
to increased access and success in algebra
coursework. Silver and Stein (1996) reported
that students from QUASAR schools were both
qualifying for and passing algebra in ninth grade
at substantially higher rates than before QUASAR.

The QUASAR project reinforces the
importance of students’ engaged time with
cognitively demanding mathematical concepts.
Sustained engaged time with quality mathematics
tasks resulted in improved student performance
on a wide range of indicators.

Research-Based Cases of School Mathematics Reform

Research Case Summary. These research cases
have three overlapping themes worthy of note.
First, high-quality mathematics was at the

center of each effort. More specifically, each
program called for mathematics instruction using
mathematical tasks not typically associated with
the lower educational expectations often found

in large urban and rural school districts. In each
program, mathematical proficiency consisted of a
balance between conceptual understanding and
procedural proficiency. Too often instruction is
based on extreme positions, rather than a balanced
approach with increasing cognitive demand.

A second common feature of each program
was the important role of classroom-based
assessment designed to better understand student
thinking about mathematical ideas. These studies
of mathematics teaching support the idea that
teachers’ knowledge of students’ reasoning when
it is integrated with a balanced mathematics
curriculum can positively affect the teaching and
learning of traditionally underserved students.
The assessments used in the research-based cases
of mathematics reform were designed to support
the learning process and to identify areas in
which further instruction is needed. The measures
included direct observations of children during
classroom activities, evaluation of student work,
and asking questions in class. The portfolio of
measures in the research-based case studies
differed from the measures used to gauge national
trends. The latter measures are designed to inform
the public about trends in student performance
or the effectiveness of large-scale educational
programs. The research-based cases included
standardized tests, selected NAEP items, and
classroom-based activities.

A third common feature of each case was the
presence of a strong mathematics professional
development program. Two key features of these
programs were teacher learning opportunities in
the areas of school mathematics content and how
children’s mathematical knowledge develops in
the content domains, including what knowledge
students were likely to bring with them to school.

These three common themes represent
important quality factors. They reinforce
how the combination of quality curriculum,
cognitive-based assessment tools, and integrated
professional development are central to school
mathematics design.



CHAPTER 5

It’s Time to Design

In this monograph, it has been argued that

calls for rigorous mathematics standards

preK-12 require thoughtful action and planning.
Moreover, the building blocks for engineering
mathematical progress in any school are time,
quality, and design. These three pillars of OTL
are foundational for the improvement of the
teaching and learning of mathematics in school
settings. There are many paths for organizing and
implementing change in school mathematics;
however, the failure to consider time and quality
factors and design issues carefully is a recipe

for lost educational opportunity. Jere Confrey
and colleagues at the Systemic Research Center
for Education in Mathematics, Science, and
Technology (SYRCE) designed Figure 6 to serve as
a conceptual model to inform the organizational
design of mathematics teaching and learning

in schools.

Figure 6

Figure 6 is included because it serves as a
reminder of key opportunity-to-learn factors and
how they interact in our systems of education.

As an engineer, it is important to keep in mind a
broader conceptual model of school change. This
is especially important in light of the day-to-day
realities of teaching, administration, and political
challenges that face educators. The many events
and distractions that occur in schools and school
districts, such as leadership changes and financial
shortfalls, only become real problems when they
influence these three foundational pillars of
learning and teaching. Unfortunately, instability
and interim leadership are rife everywhere

in public schooling. Recall, engineers “learn

to build.” Both learning and building require
stability, long-term, and insightful leadership. The
building process for the engineer is supported by
the following model development sequence:

Standards-based

Curricula & Technology
| ti
Teacher R— Student.MobiIity
Turnover & Absenteeism
Teacher Knowledge & StudemData &
Community Student Work

Professional
DeveIo.pment

Source: Confrey, Castro-Filho, & Wilhelm (2000)
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+ Model Construction
+ Model Exploration
+ Model Application

« Model Revision

Models are a language for describing patterns,
patterns that can be observed and tested in the
real world of schools. Thus, the process of model
development emphasizes understanding school
factors that influence opportunity to learn
mathematics. The model development sequence
requires additional clarification.

Model Construction. OTL requires a clear vision
and set of learner goals. Many school districts
accomplish this part of model construction by
adopting all or portions of state mathematics
standards and in combination with local system
objectives create specific district-level goals for
what all students should know and be able to
do. District mathematics goals are important
quality indicators for teachers, administrators,
parents, students, and the broader community.
Thus, multiple communication strategies for
each constituency should be part of the model’s
design. Each constituency should be provided
samples of student work. The work should
exemplify system-wide expectations and illustrate
student work products that meet the district’s
mathematics standards. Setting high standards
and communicating a clear vision are only part of
the model construction process. Ensuring that all
students have access to a quality curriculum also is
part of the process.

There are a number of steps that are vital
to initiating a quality curriculum. Each school
should design an academic plan based on local
mathematics standards and an associated
accountability structure. The process includes:

1. Communicating the importance of consistent
application of curricular programs and
standards

2. Eliminating courses and academic experiences
lacking the rigor of mathematics standards or
inconsistent with developmentally appropriate
mathematics practice

3. Providing adequate time in the curricular
design to focus on core subjects

4. Building a timely framework for monitoring
student progress using data

5. Providing teacher and administrator

It's Time to Design

professional development focused on
classroom strategies for assessing student
learning of mathematics standards

Vision, curriculum quality and accountability
systems are vital to constructing a model.
However, policy and resource alignment also
contribute to a comprehensive model design.

It is difficult to imagine a sustained change
strategy that does not include front-end alignment
of school policies and resources to support
rigorous standards. For example, ongoing
mathematics professional development should
be part of the model construction process. In
addition, effective student support programs
should be prepared and ready to implement in
response to updates on student assessments and
mobility information. Too often, responses to
these types of data are not part of the upfront
planning process. Consequently, many school
districts find themselves engaged in triage
mode, piecing together programs in real-time,
rather than implementing planned data-
driven interventions. Resources aligned with
an appropriate vision, quality curriculum, and
accountability systems are part of the technical
core of the model construction process. The
technical core is vitally important, but not enough.
Ultimately, people explore the model and make
decisions.

Model Exploration. Model construction includes
planning for reflective examination of student,
teacher, and school-level progress. Embedded in
the model construction process are key elements
of model exploration. The constructed model
should include rich opportunities to explore
the progress of the organization in relation to
its goals. Yet, model exploration is not merely
an instrumental activity; instead, exploration is
cultural and people driven, with teachers and
administrators central to the evaluative process.
As Figure 6 indicates, teacher community
and knowledge are important components of
the feedback loop. Teachers interpret student
performance and assessments and in turn they
should rethink their practice and that of the
school in conjunction with other instructional
leaders. This process is greatly enhanced where
community norms are established and teacher
turnover is low. Teacher community and norms
are linked to the model application process.
The importance of teacher collective practice in



school mathematics can’t be overstated (see e.g.,
Gutierrez, 1996). As Campbell (1996) stated, “It
may be unreasonable to expect sustained and
reflective reform in isolated classrooms across
urban settings. It is not unreasonable to address
reform in urban schools where teachers and
administrators are working together to develop a
shared purpose and meaning” (p. 453).

Both administrators and teachers require
training to support their community efforts to
build a student-centered, data-driven organization.
Classroom strategies for assessing student learning
should be central to the common professional
development. The community building and
professional development activities also must be
combined with an aligned monitoring process that
includes:

1. Timely and usable data on student progress

2. Opportunities for mid-course corrections
based on data

3. Disaggregated student achievement data and
mobility information

4. Recognition and reward for positive results

Model exploration potentially offers important
benefits to schools and school districts. First,
model exploration can provide highly visible
evidence related to opportunity to learn and
support administrators and teachers seeking
successful exemplars of effective mathematics
practice (Skrla and Scheurich, 2001). Second,
incremental success in student achievement
and teacher effectiveness can lead to higher
expectations and goals for academic achievement
of all demographic groups.

Model Application. It is possible to focus on

the design of the model and matters of model
exploration without attending to the classroom
practices and support systems associated

with instruction. Most school systems begin

the academic year with some kind of school
improvement plan, and while the quality of these
plans varies widely, substantive change models

do exist. Further, it is quite common to find some
level of model exploration in most school systems.
Although, the quality factors associated with

the exploration are often limited, arguably the
most serious challenge facing leadership is model
application or implementation. Many instructional
programs are adopted, distributed, and discarded
each year.

There must be a well-thought-out plan to
gain any implementation traction. A key factor
for success in this area is a fine-tuned curriculum
guide that clearly delineates important content
aligned to appropriate instructional materials.
Further, research-based professional development
for teams of teachers and instructional leaders is
vital. The work of the teacher collective enterprise
and significant time engaged with high-quality
professional development are central to the
implementation process. And quality student
assessments—classroom based as well as more
summative assessment—should be linked to
collective and individual reflection by members
of the teacher community. Quality curriculum,
professional development, collective practice and
the other aspects of the model design are a support
system for creating a successful teaching and
learning process.

Teachers are key to model application. Clearly,
mathematics teachers at all levels, kindergarten
through college, are central to the improvement
of mathematics education. If professional
development is to a make a difference to students
in the classroom, it must be teacher-focused and
student-centered. Stigler and Hiebert (1999)
write, “Improving something as complex and
culturally embedded as teaching requires the
efforts of all players, including students, parents
and politicians. But teachers must be the primary
driving force behind change. They are in the best
position to understand the problems that students
face and to generate possible solutions” (p. 135).

Successful model application is largely
classroom based and includes:

1. Teachers and students participating in two-
way conversations about mathematics

2. Teachers pushing for both mathematical
meaning behind quality curricular tasks and
procedural fluency

3. Teachers building instruction on student
thinking and continuity in the mathematics
domain daily

4. Teachers and administrators organizing
classes and support systems to ensure
adequate time for students to learn the
mathematics content

5. Teachers and administrators maintaining high
expectations for all learners
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These five components of instruction
are foundational to model application and
opportunity to learn. While these components
are stable in a broader sense, there are times
when the design is not quite adequate to achieve
system goals or more ambitious goals require a
revised model.

Model Revision. Careful reflection on the
progress being made is central to future
progress. How is the model helping or hindering
teachers and students? Each phase of the model
development sequence should be reviewed and
critical discussions about fine-tuning or model
abandonment must be held. Revision is not merely
an end of the year activity. Model revision is a
continuous process that should be part of the
design consideration. To aid in both the design
and model revision process, Appendix B includes
an Engineering Change Assessment Instrument.
This instrument can be used to help keep track
of school and school district progress on key
opportunity-to-learn factors.

Taking a model-based approach to
the mathematics change process involves
constructing a change strategy, exploring the
qualities and feasibility of the strategy, applying
or implementing the strategy, and continuously
fine-tuning the strategy based on data. A close
examination of many school district strategic
plans will reveal many goals and targets related
to the state accountability systems. Often, what is
absent is a coherent change strategy or model for
improvement in mathematics that takes seriously
the time, quality, and design considerations
reviewed in this document. Few school districts
explore the qualities or feasibility of their change
effort. Rather, many buy into a model without
considering the conditions and constraints that
exist in the system. For example, this is evident
when major initiatives to improve mathematics,
reading, and science at the elementary level are
occurring simultaneously. The point is not that
three reform strategies cannot occur together;
rather, failure to coordinate the changes is a
common strategic flaw. Many reasonable change
strategies are destroyed as a result of the failure to
consider the feasibility of the model.

It's Time to Design

Engineering Progress:
Limiting Conditions

Limiting conditions are conditions that materially
affect the appraisal process and, as a consequence,
the value conclusion. For example, having no
electrical power in a school building is a limiting
condition, as it prohibits the use of computers
and other electronic equipment. This notion

can be applied to mathematics education. What
limiting conditions exist that can affect student
performance on mathematics outcome measures
and, as a consequence, the public’s perception

of school quality? A brief examination of

recent legislation will provide some insight

into this question.

Current educational policy and law, more
specifically NCLB, calls for educators to carefully
examine student achievement by demographic
group. Moreover, schools and administrators
are being held accountable for improved student
performance. This is a radical departure from past
educational practice. In fact, this law represents a
major shift in federal discourse related to matters
of equality. According to Crenshaw (1988), a
legal scholar, there are two visions of equality
present in anti-discrimination legislation and
discourse. One view of equality, which she refers
to as the restrictive view, “treats equality as a
process, downplaying the significance of actual
outcomes” (p. 1341). This monograph highlighted
important processes related to student learning.
While critical to engineering positive progress, the
opportunity-to-learn recommendations and other
research-based lessons are limited. Specifically,
they represent building blocks. However, someone
must build the building. Thus, a potential limiting
condition is related to people, more specifically to
educators willing to do the hard work associated
with building mathematical minds.

In the case of school mathematics, the
“product” is optimal student learning as
measured by state-mandated tests—the intended
outcome. Hence, current law as reflected in
NCLB, is more consistent with another view of
equality—the expansive view. Professor Crenshaw
(1988) stated this second view of equality, the
expansive vision, “stresses equality as a result
and looks to real consequences” (p. 1341). The
NCLB legislation calls for educators to reflect
seriously on student outcomes by demographic
group. This expansive view suggests that equal



treatment of students is not equitable if it leads to
differential outcomes. This perspective conflicts
with the worldview held by many educators that
“equal treatment” of all students is optimal. If
educators assume a “one-size-fits-all” approach
to classroom practice, without careful reflection
and planning for individual as well as collective
student learning, the product is likely to be
unequally distributed opportunities to learn and
continued underperformance of traditionally
underserved students. In the case of NCLB this
“equal treatment” worldview and its associated
ideological perspective—colorblindness—are
limiting conditions.

Many educators who view the “equal
treatment” position as a well-meaning and
fair perspective assume colorblindness as
a political or ideological stance. Part of the
problem with colorblindness is that it ignores
students and their performance. Irvine (1990)
states, “by ignoring students’ most obvious
physical characteristic, race, ...teachers are also
disregarding students’ unique cultural behaviors,
beliefs, and perceptions—important factors that
teachers should incorporate, not eliminate, in
their instructional strategies” (p. 54). Today, the
colorblind method of mathematics education
creates barriers to true equality by erecting
barriers in school mathematics such as

1. Persistent tracking,

2. Fewer opportunities for African American
and Hispanic students to learn from the best
qualified teachers,

3. Less access to technology, and

4. Cultural discontinuity between school
mathematics and the family life of diverse
student groups (National Science Board, 1991;
Oakes, 1990; Piller, 1992; Stanic, 1991).

The first three of these barriers to equity,
which are quantifiable, are considered “acceptable”
indicators of unequal educational conditions. In
contrast, this fourth barrier is subtle and difficult
to identify and measure in everyday schooling.
The matter of family life and school mathematics
warrants additional discussion.

Less frequently, educators have explored the
experiences of stakeholders other than teachers

in the process of school mathematics reform
(see Graue and Smith, 1996). This is a serious
limiting condition. In particular, there is limited
information available on how parents

« Perceive their children’s mathematics
instruction,

+ Interpret their children’s performance in light
of mathematics standards and state testing, or

« View their role in mathematics education
process.

As Graue and Smith (1996) noted, despite
parental presence in many aspects of educational
reform rhetoric, researchers of school mathematics
practice and design have shown little interest in
parents.” Ethically, in the context of high-stakes
testing and reformed practice, this is a condition
that must be addressed by the focused efforts of
scholars, school-based educators, and community-
based organizations. Matters of ethics represent
the final limiting conditions.

The pressures of high-stakes testing,
public disclosure of testing results, and the real
possibility of job loss or demotions have placed a
new and heavy burden on professional educators.
This burden will cause some to carefully design
change strategies and create exciting learning
environments for students. For others, the
score-high mentality will create new ethical
dilemmas. Reports have emerged of schools and
districts removing large numbers of students
from opportunities to test, rather than creating
appropriate opportunities to learn. The ethical
challenges are endless when the stakes are high
and very real. As with good engineers, educators
must factor ethics into their thinking, everyday
planning, and ultimately into their design strategy.
Failure to do so will endanger the building
process.

In the pursuance of an engineering strategy
in mathematics education, the importance of
dedicated educators cannot be underestimated.
Many educators are excellent, but some are not.
The following questions highlight the traits of
those ready to improve school mathematics:

+ Does the educator listen to new ideas with an
open mind?

+ Does the teacher consider a variety of solution

> One exception is Family Math (www.lhs.berkeley.edu/equals/FMnetwork.htm).
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methods associated with student learning
before choosing a design approach?

« Is the educator content with determining a
learning design on the basis of trial and error?

+ Does the teacher use phases such as, “I need to
understand why students learn mathematics
with this approach?” and “Let’s consider all
possibilities.”

It's Time to Design

If educators are eager to listen, open to a
variety of educational solutions, never content
with just trial and error methods, and pressed to
know why a method works with students, they
represent the type of teachers and instructional
leaders who can engineer changes in mathematics
education. These kinds of educators are
foundational for “Learning to Build.”
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Appendix A

Table A1: Mathematics Proficiency Levels from the 1992 NELS:88 Second Follow-up Survey

Below level 1

Unable to perform simple arithmetic operations

Level 1 (Low)

Able to perform simple arithmetical operations on whole numbers; single step problems

formulate multi-step solutions to word problems

Level 2 Able to perform simple operations with decimals, fractions, powers, and roots
Level 3 Able to perform simple problem solving of low-level mathematical concepts
Level 4 Understands intermediate-level mathematics concepts or demonstrates the ability to

Level 5 (High)

Able to solve complex multi-step word problems, or demonstrates knowledge of
mathematical principles found in advanced mathematics courses, or both

Source: Green, Dugoni, Ingels, and Camburn, 1995.

Table A2: Sophomore Cohorts from the HS&B
1980 Study and the 1990 NELS: 88 Follow-up
Mathematics Study, by Racial-Ethnic Group

All Students 32.81 35.97 .26
African 24.51 28.74 .35
American

Asian 38.82 40.26 12
Hispanic 25.96 30.75 34
White 35.41 37.96 .21

Source: Rasinski, Ingels, Rock, Pollack, 1993.

For all students, the 1980 HS&B mean test score was
32.81; the 1990 NELS:88 mean was 35.97; and the
effect size was .26. These are scale scores constructed
using IRT scaling procedures. The effect size of .26 is
the difference between the 35.97 and 32.81, which

is 3.16, divided by the pooled 1980/1990 standard
deviation. The .26 effect size indicated that on
average, the sophomores in 1990 were performing
26% of a standard deviation higher than the 1980
HS&B cohort.
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Table A3: NAEP Trends in Average Mathematics
Scale Scores by Parents’ Highest Level of Education

Parents’
Level of
Education

Less than
High School

Graduated
High School

Graduated
College

Table A4: Mathematics Performance of

Sophomore Cohorts from the HS&B 1980 Study
and the 1990 NELS:88 Follow-up Study, by SES

Standard errors of the scale scores appear in parentheses.
*Significantly different from 1999. Source: NAEP 1999 Trends
in Academic Progress, NCES (2000).

Appendix A

Test Year Age 9 Age 13 Age 17 990
1999 213.5(2.8) | 256.2 (2.8) | 289.2 (1.8) High 39.53 42.90 27
1996 219.8 (3.3) | 253.7 (2.4) |280.5 (2.4)* High Middle 34.58 3715 21
1994 | 210.0 (3.0) | 254.5 (2.1) | 283.7 (2.4) Low Middle 31.65 34.10 20
1992 | 216.7 (2.2) | 255.5 (1.0) | 285.5 (2.3) Low 2673 2917 18
Source: Rasinski, Ingels, Rock, Pollack, 1993.
1990 210.4 (2.3) | 253.4(1.8) | 285.4 (2.2)
1986 [200.6 (2.5)*| 252.3 (2.3) |279.3 (2.3)*
1982 199.0 (1.7)* | 251.0 (1.4) | 279.3 (1.0)*
1978|2003 (1.5)*| 2447 (1.2%| 2796 (1.2 Table A5: Mathematics Proficiency by Race,
oA A A Controlling for SES, 1992 NELS:88 Second
Follow-up Survey of Seniors
1999 224.4 (1.7) | 264.0 (1.1) | 299.1 (1.6) P y
1996 221.2(1.7) | 266.8 (1.1) | 297.3 (2.4) 0 ;
1994 225.3(1.3) | 265.7 (1.1) | 295.3 (1.1) Low
1992 | 222001.5) | 263.2(1.2) | 297.6 (1.7) AEEm o 225
Hispanic 514 12.5
1990 226.2 (1.2) | 262.6 (1.2) |293.7 (0.9)*
African American 60.4 49
1986 |218.4 (1.6)*| 262.7 (1.2) |293.1 (1.0)* .
White 40.2 18.3
1982 |218.3 (1.1)* | 262.9 (0.8) |293.4 (0.8)* Middle
1978 219.2 (1.1)* | 263.1 (1.0) |293.9 (0.8)* Asian 15.1 40.7
1999 | 239.7 (0.8) | 285.8 (1.0) | 316.5(1.2) Hispanic 35.0 25.3
1996 | 2397 (1.4) | 282.9(1.2) | 316.6 (1.3) AT 449 156
White 21.7 349
1994 237.8(0.8) | 2849 (1.2) | 317.6 (1.4)
Low
1992 236.2 (1.0) |282.8 (1.0)*| 315.9 (1.0) i
Asian 8.1 64.7
1990 | 237.6(1.3) [280.4 (1.0)*| 316.2 (1.3) R 16.6 438
1986 231.3 (1.1)* | 279.9 (1.4)* | 313.9 (1.4) African American 26.3 26.5
1982 [228.8 (1.5)*| 282.3 (1.5) |312.4 (1.0)* White 7.7 58.9
Source: Green, Dugoni, Ingels, & Camburn (1995).
1978 231.3(1.1)* | 283.8 (1.2) | 316.8 (1.0)
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